Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 124(41): 22743-22752, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-34306293

ABSTRACT

Multilayer structures with two dielectrics having different optical constants and no structural features in the x-y plane can display photonic band gaps (PBGs) and are called one-dimensional photonic crystals (1DPCs). If the top layer thickness is carefully selected, the electromagnetic energy can be trapped at the top surface. These highly enhanced fields are called Bloch surface waves (BSWs). The BSW resonance angles are sensitive to the dielectric constant above the top dielectric layer. As a result, BSW structures have been used for surface plasmon resonance-like measurements without the use of a metal film. However, the emphasis on surface-localized BSWs has resulted in limited interest in fluorophore interactions with other optical modes of 1DPCs or Bragg gratings without the different thickness top layer. Herein, three different fluorescent probes were used to cover the short, center, and long wavelengths of the PBG. We demonstrate efficient coupling of fluorophores to both the BSW and internal modes (IMs) of a 1DPC. Coupling to the IM is expected to be low because of the micron-scale distances between the fluorophores and IM, which exists inside the Bragg gratings. At different wavelengths or observation angles, the IM-coupled emission (IMCE) can occur with the first three modes of the multilayer. This coupling is not dependent on a BSW mode. IMCE was also observed for a monolayer of fluorophore-labeled protein. IMCE enables sensitive detection of surface-bound fluorophores. Applications are anticipated in high sensitivity detection and super-resolution imaging.

2.
Sci Rep ; 8(1): 3577, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29476173

ABSTRACT

We report on terahertz characterization of La-doped BaSnO3 (BSO) thin-films. BSO is a transparent complex oxide material, which has attracted substantial interest due to its large electrical conductivity and wide bandgap. The complex refractive index of these films is extracted in the 0.3 to 1.5 THz frequency range, which shows a metal-like response across this broad frequency window. The large optical conductivity found in these films at terahertz wavelengths makes this material an interesting platform for developing electromagnetic structures having a strong response at terahertz wavelengths, i.e. terahertz-functional, while being transparent at visible and near-IR wavelengths. As an example of such application, we demonstrate a visible-transparent terahertz polarizer.

3.
J Phys Chem C Nanomater Interfaces ; 120(50): 28727-28734, 2016 Dec 22.
Article in English | MEDLINE | ID: mdl-28725334

ABSTRACT

The interaction of fluorophores with nearby metallic structures is now an active area of research. Dielectric photonic structures offer some advantages over plasmonic structures, namely small energy losses and less quenching. We describe a dielectric one-dimensional photonic crystal (1DPC), which supports Bloch surface waves (BSWs) from 280 to 440 nm. This BSW structure is a quartz slide coated with alternating layers of SiO2 and Si3N4. We show that this structure displays BSWs and that the near-UV fluorophore, 2-aminopurine (2-AP), on the top surface of the structure couples with the BSWs. Fluorophores do not have to be inside the structure for coupling and show a narrow angular distribution, with an angular separation of wavelengths. The Bloch wave-coupled emission (BWCE) radiates through the dielectric layer. These BSW structures, with useful wavelength range for detection of intrinsic protein and cofactor fluorescence, provide opportunities for novel optical configurations for bioassays with surface-localized biomolecules and for optical imaging using the coupled emission.

SELECTION OF CITATIONS
SEARCH DETAIL
...