Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
1.
Front Pharmacol ; 15: 1366061, 2024.
Article in English | MEDLINE | ID: mdl-38873415

ABSTRACT

Traditionally, pharmacological mammalian/mechanistic targets of rapamycin (mTOR) kinase inhibitors have been used during transplantation and tumor treatment. Emerging pre-clinical evidence from the last decade displayed the surprising effectiveness of mTOR inhibitors in ameliorating Alzheimer's Disease (AD), a common neurodegenerative disorder characterized by progressive cognitive function decline and memory loss. Research shows mTOR activation as an early event in AD development, and inhibiting mTOR may promote the resolution of many hallmarks of Alzheimer's. Aberrant protein aggregation, including amyloid-beta (Aß) deposition and tau filaments, and cognitive defects, are reversed upon mTOR inhibition. A closer inspection of the evidence highlighted a temporal dependence and a hallmark-specific nature of such beneficial effects. Time of administration relative to disease progression, and a maintenance of a functional lysosomal system, could modulate its effectiveness. Moreover, mTOR inhibition also exerts distinct effects between neurons, glial cells, and endothelial cells. Different pharmacological properties of the inhibitors also produce different effects based on different blood-brain barrier (BBB) entry capacities and mTOR inhibition sites. This questions the effectiveness of mTOR inhibition as a viable AD intervention strategy. In this review, we first summarize the different mTOR inhibitors available and their characteristics. We then comprehensively update and discuss the pre-clinical results of mTOR inhibition to resolve many of the hallmarks of AD. Key pathologies discussed include Aß deposition, tauopathies, aberrant neuroinflammation, and neurovascular system breakdowns.

2.
Sci Total Environ ; 928: 172597, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38642753

ABSTRACT

Solar-driven interfacial water purification emerges as a sustainable technology for seawater desalination and wastewater treatment to address the challenge of water scarcity. Currently, the energy losses via radiation and convection to surrounding environment minimize its energy efficiency. Therefore, it is necessary to develop strategies to minimize the heat losses for efficient water purification. Here, a novel evaporator was developed through the in situ gelation of PAM hydrogel on the surface carbonized hydroponic bamboo (PSC) to promote energy efficiency. The inherent porous and layered network structures of bamboo, in synergy with the functional hydration capacity of PAM hydrogel, facilitated adequate water transportation, while reducing evaporation enthalpy. The PAM hydrogel firmly covered on the photothermal layer surface effectively minimized the radiation and convection heat losses, while further harvesting those thermal energy that would otherwise dissipate into the surrounding environment. The reduced thermal conductivity of PSC served as a thermal insulator as well, obstructing heat transfer to bulk water and thus diminishing conduction losses. Consequently, the rational designed PSC could efficiently convert solar energy to purified water, leading to the evaporation of 2.09 kg m-2 h-1, the energy efficiency of 87.6 % under one sun irradiation, and yielding 9.6 kg m-2 fresh water over 11 h outdoor operation. Moreover, the PSC also performs excellent salt rejection, and long-term stability at outdoor experiment. These results demonstrated high and stable solar evaporation performance could be achieved if turning heat losses into a way of extra energy extraction to further enhance the evaporation performance. This strategy appears to be a promising strategy for effective thermal energy management and practical application.

3.
Dalton Trans ; 53(18): 8011-8019, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38651951

ABSTRACT

Designing efficient, inexpensive, and stable photocatalysts to degrade organic pollutants and antibiotics has become an effective way for environmental remediation. In this work, we successfully performed in situ growth of CdS QDs on the surface of elliptical BiVO4 to try to show the advantage of the binary heterojuncted photocatalyst (BVO@CdS) for the photocatalytic degradation of tetracycline (TC). The In situ growth of CdS QDs can provide a large number of reactive sites and also generate a larger contact area with BiVO4. In addition, compared with mechanical composite materials, in situ growth can significantly reduce the energy barrier at the interface between BiVO4 and CdS, providing more channels for the separation and migration of photogenerated charge carriers, and further improving reaction activity. As a result, BVO@CdS-0.05 shows the best degradation efficiency, with a degradation rate of 88% after 30 min under visible light. The TC photodegradation follows a pseudo-second-order reaction with a dynamic constant of 0.472 min-1, which is 6.47 times that of pure BiVO4, 7.24 times that of pure CdS QDs and 2 times that of the mechanical composite. The degradation rate of BVO@CdS-0.05 decreases to 77.8% with a retention rate of 88.5% after four cycles, demonstrating excellent stability. Through liquid chromatography-mass spectrometry (LC-MS) analysis, two possible pathways for TC degradation are proposed. Through free radical capture experiments, electron spin resonance measurements, and photoelectrochemical comprehensive analysis, it is confirmed that BVO@CdS composites have constructed an efficient Z-scheme heterojunction via in situ growth, thereby highly enhancing the separation and transport efficiency of charge carriers.

4.
Int J Biol Macromol ; 265(Pt 1): 130742, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492704

ABSTRACT

In this work, soybean lecithin (LC) was used to modify ß-cyclodextrin (ß-CD) with hydrophobic fat chains to become amphiphilic (LC-CD), and vitamin E (VE) was encapsulated in former modified ß-CD complexes (LC-CD-VE), the new Pickering emulsions stabilized by LC-CD-VE and LC-CD complexes for the delivery of ß-carotene (BC) were created. The surface tension, contact angle, zeta potential, and particle size were used to assess the changes in complexes nanoparticles at various pH values. Furthermore, LC-CD-VE has more promise as Pickering emulsion stabilizer than LC-CD because of the smaller particle size (271.11 nm), proper contact angle (58.02°), and lower surface tension (42.49 mN/m). The interactions between ß-cyclodextrin, soybean lecithin, and vitamin E were confirmed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and thermogravimetric analysis (TGA). The durability of Pickering emulsions was examined at various volume fractions of the oil phase and concentrations of nanoparticles. Compared to the emulsion stabilized by LC-CD, the one stabilized by LC-CD-VE showed superior storage stability. Moreover, for the delivery of BC, Pickering emulsions stabilized by LC-CD and LC-CD-VE can outperform bulk oil and Tween 80 stabilized emulsions in terms of UV light stability, storage stability, and bioaccessibility. This work could offer fresh perspectives on stabilizer alternatives for Pickering emulsion delivery systems.


Subject(s)
Cyclodextrins , Nanoparticles , beta-Cyclodextrins , Vitamin E/chemistry , Lecithins , beta Carotene/chemistry , Glycine max , Emulsions/chemistry , beta-Cyclodextrins/chemistry , Excipients , Digestion , Particle Size
5.
ACS Appl Mater Interfaces ; 16(7): 9466-9482, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38324654

ABSTRACT

The creation of a new metal-organic framework (MOF) with a hollow hierarchical porous structure has gained significant attention in the realm of enzyme immobilization. The present work employed a novel, facile, and effective combinatorial technique to synthesize modified MOF (N-PVP/HZIF-8) with a hierarchically porous core-shell structure, allowing for the preservation of the structural integrity of the encapsulated enzyme molecules. Scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, confocal laser scanning microscopy, and other characterization tools were used to fully explore the changes of morphological structure and surface properties in different stages of the preparation of immobilization enzyme CRL-N-PVP/HZIF-8, thus showing the superiority of N-PVP/HZIF-8 as an enzyme immobilization platform and the logic of the immobilization process on the carrier. Additionally, the maximum enzyme loading was 216.3 mg mL-1, the relative activity of CRL-N-PVP/HZIF-8 increased by 15 times compared with the CRL@ZIF-8 immobilized in situ, and exhibited quite good thermal, chemical, and operational stability. With a maximal conversion of 88.8%, CRL-N-PVP/HZIF-8 demonstrated good catalytic performance in the biosynthesis of phytosterol esters as a proof of concept. It is anticipated that this work will offer fresh concepts from several perspectives for the creation of MOF-based immobilized enzymes for biotechnological uses.


Subject(s)
Metal-Organic Frameworks , Zeolites , Biocatalysis , Zeolites/chemistry , Porosity , Enzymes, Immobilized/chemistry , Catalysis , Metal-Organic Frameworks/chemistry
6.
Talanta ; 270: 125569, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38141463

ABSTRACT

In this work, a new competitive immunosensor for aflatoxin B1 (AFB1) detection was developed using europium (Eu) fluorescent nanospheres and magnetic beads. Firstly, Eu nanospheres were synthesized through two steps including carboxylated polystyrene nanospheres and Eu-doped polystyrene nanospheres preparation. Then Eu nanospheres were covalently tagged to anti-AFB1 monoclonal antibody (anti-AFB1 mAb) through an EDC coupling method. Carboxylated Fe3O4 magnetic beads were conjugated to AFB1-BSA through EDC/NHS crosslinking to obtain AFB1-BSA-Fe3O4. In the absence of AFB1, Eu-anti-AFB1 mAb were incubated with AFB1-BSA-Fe3O4 to form Eu-anti-AFB1 mAb-AFB1-BSA-Fe3O4 in PBS buffer. However, in the presence of AFB1, the competitive interaction of AFB1 and AFB1-BSA-Fe3O4 to bind with Eu-anti-AFB1 mAb occurred. With the increasing concentration of AFB1, less Eu-anti-AFB1 mAb-AFB1-BSA-Fe3O4 formed. So the fluorescence intensity of Eu-anti-AFB1 mAb-AFB1-BSA-Fe3O4 was gradually decreased after magnetic separation. The degree of fluorescence decrease was linear with respect to the logarithm of AFB1 concentration in the range of 0.01-2 ng/mL in both buffer solution and feed samples and the detection limit was 0.003 ng/mL. What's more, the immunosensor showed excellent specificity for AFB1 without being interfered by other mycotoxins. In consideration of the excellent performance of this immunosensor, we can speculate that the proposed method could be widely used in detecting food contaminants.


Subject(s)
Aflatoxins , Biosensing Techniques , Nanospheres , Aflatoxin B1/analysis , Europium , Immunoassay/methods , Biosensing Techniques/methods , Polystyrenes , Limit of Detection
7.
Int J Biol Macromol ; 253(Pt 3): 126698, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37678690

ABSTRACT

The food industry has paid lots of attentions to curcumin because of its potential bioactive qualities. However, its use is severely constrained by its low bioavailability, stability and water solubility. Herein, we created sodium caseinate and carboxymethylpachymaran (CMP) nanoparticles (SMCNPs) that were loaded with curcumin. The composite nanoparticles were spherical, as characterized by SEM and TEM, the fluorescence spectroscopy, FTIR and XRD research revealed that hydrogen bonding, hydrophobic interaction and electrostatic interaction were the main drivers behind the creation of the nanoparticles. The SMCNPs exhibited lower particle size, greater dispersion and higher encapsulation rate when the mass ratio of sodium caseinate to CMP was 3:5 (particle size of 166.8 nm, PDI of 0.15, and encapsulation efficiency of 88.07 %). The composite nanoparticles had good antioxidant activity, physical stability and sustained release effect on intestinal tract during the in vitro simulation experiments, successfully preventing the early release of curcumin into gastric fluid. Finally, cytotoxicity studies told that the prepared composite nanoparticles have good biocompatibility and can inhibit the growth of tumor cells (HT-29). In conclusion, using CMP and sodium caseinate as carriers in this study may open up a fresh, environmentally friendly, and long-lasting way to construct a bioactive material delivery system.


Subject(s)
Curcumin , Nanoparticles , Curcumin/chemistry , Caseins/chemistry , Nanoparticles/chemistry , Solubility , Particle Size , Drug Carriers/chemistry
8.
J Hazard Mater ; 460: 132281, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37639792

ABSTRACT

As a major hazardous additive released from microplastics and nanoplastics, identifying dibutyl phthalate (DBP) in complex matrices attracts a growing concern in environmental monitoring and food safety. For the first time, Cu2O/Cu3SnS4 nanoflower is prepared and serves as the photoactive material which can be constructed as a smartphone-based photoelectrochemical (PEC) point-of-care test (POCT). Effectively matching energy levels between Cu2O and Cu3SnS4 accelerated the transfer of photogenerated electron-hole pairs, significantly improving the intelligent PEC POCT performance. The novel Cu2O/Cu3SnS4 has proven to be the Z-scheme heterojunction by density functional theory calculation. A competitive immunoassay has been realized on a Cu2O/Cu3SnS4 modified electrode, dramatically decreasing the photocurrent signal and enhancing POCT sensitivity. The smartphone has been used to record and transfer PEC results. Under optimal conditions, the PEC POCT exhibited a satisfying linear range (0.04-400 ng/mL) and a low detection limit of 7.94 pg/mL in real samples, together with excellent stability, repeatability, reproducibility and selectivity. The PEC POCT system provides good performance and practicability in determining DBP in water and edible oil samples. This proposal provides a practical strategy for the intelligent POCT for environment monitoring and food safety.


Subject(s)
Dibutyl Phthalate , Plastics , Reproducibility of Results , Smartphone , Point-of-Care Testing
9.
Front Oncol ; 13: 1236066, 2023.
Article in English | MEDLINE | ID: mdl-37554159

ABSTRACT

Background: Meningioma is a common non-glial tumor of the brain. Extracranial meningiomas in the parapharyngeal space are especially rare. Herein we report a case of extracranial meningioma in the parapharyngeal space and give a comprehensive description of its complete clinical course and radiological findings, which may provide helpful information in the diagnosis and treatment of extracranial meningiomas in the parapharyngeal space. Case Presentation: A 61-year-old man presented a slowly increased mass under the left ear without pain and numbness over one year. Ultrasound examination detected a hypoechoic uneven mass behind the left parotid gland with a clear boundary, and color Doppler flow imaging revealed blood flow signals within the mass. Unenhanced computed tomography (CT) of the craniofacial region revealed a homogenous soft tissue mass in the parapharyngeal space without calcification. Magnetic resonance imaging (MRI) showed that a homogenous soft tissue mass was hyperintense on T2-weighted image, hypointense on T1-weighted image, and obviously enhanced after contrast enhancement in the parapharyngeal space. Coronal MRI showed that the lesion originated from basicranial dura extending into parapharyngeal space through the left foramen ovale at the skull base. Finally, histopathological and immunohistochemical analyses confirmed the final diagnosis of extracranial meningiomas in the parapharyngeal space. Conclusion: Extracranial meningiomas of the parapharyngeal space are rare and often pose a diagnostic challenge. Preoperative imaging examinations, especially CT and MRI, can aid in the accurate preoperative diagnosis, especially when intracranial extensions and dural tail signs are observed.

10.
Brain Res Bull ; 202: 110734, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37586426

ABSTRACT

Abnormalities in hippocampal synaptic plasticity contribute to the pathogenesis of post-traumatic stress disorder (PTSD). The Wnt/ß-catenin signaling pathway is critical for the regulation of synaptic plasticity. PTSD symptoms can be alleviated by correcting impaired neural plasticity in the hippocampus (Hipp). Electroacupuncture (EA) has a therapeutic effect by relieving PTSD-like behaviors. However, little is known about whether the Wnt/ß-catenin pathway is involved in EA-mediated improvements of PTSD symptoms. In this study, we found that enhanced single prolonged stress (ESPS)-induced PTSD led to abnormal neural plasticity, characterized by the decline of dendritic spines, the expression of postsynaptic density 95 (PSD95), and synaptophysin (Syn) in the stressed Hipp along with the reduction of Wnt3a and ß-catenin, and increased GSK-3ß. EA significantly alleviated PTSD-like behaviors, as assessed by the open field test, elevated platform maze test and conditioning fear test. This was paralleled by correcting abnormal neural plasticity by promoting the expression of PSD95 and Syn, as well as the number of dendritic spines in the Hipp. Importantly, EA exerted anti-PTSD effects by augmenting the expression levels of Wnt3a and ß-catenin, and decreasing that of GSK-3ß. The effects mediated by EA were abolished by XAV939, an inhibitor of the Wnt/ß-catenin pathway. This suggests that EA relieved ESPS-induced PTSD-like behaviors, which can largely be ascribed to impaired neural plasticity in the Hipp. These findings provide new insights into possible mechanisms linking neural plasticity in the Hipp as potential novel targets for PTSD treatment in EA therapy.


Subject(s)
Electroacupuncture , Stress Disorders, Post-Traumatic , Animals , beta Catenin/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Hippocampus/metabolism , Neuronal Plasticity , Stress Disorders, Post-Traumatic/therapy , Stress Disorders, Post-Traumatic/metabolism , Transcription Factors/metabolism , Wnt Signaling Pathway , Mice
11.
Molecules ; 28(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37446674

ABSTRACT

The solubility of thiamine nitrate in {(methanol, acetone, isopropanol) + water} solvents will provide essential support for crystallization design and further theoretical studies. In this study, the solubility was experimentally measured over temperatures ranging from 278.15 to 313.15 K under atmospheric pressure using a dynamic method. The solubility increased with increasing temperature at a constant solvent composition. The dissolving capacity of thiamine nitrate in the three binary solvent mixtures at constant temperature in the low ratio of water ranked as water + methanol > water + acetone > water + isopropanol generally. Interestingly, in the high ratio of water systems, especially when the molar concentration of water was greater than 0.6, the dissolving capacity ranked as water + acetone > water + methanol > water + isopropanol. Additionally, the modified Apelblat equation, λh equation, van't Hoff equation and NRTL model were used to correlate the solubility data in binary mixtures. It turned out that all the selected thermodynamic models could give satisfactory results. Furthermore, the thermodynamic properties of the dissolution process of thiamine nitrate were also calculated based on the modified van't Hoff equation. The results indicate that the dissolution process of the thiamine nitrate in the selected solvents is all endothermic.


Subject(s)
Methanol , Nitrates , Solvents/chemistry , Methanol/chemistry , Solubility , 2-Propanol/chemistry , Acetone , Thiamine , Thermodynamics , Water/chemistry , Temperature
12.
MycoKeys ; 95: 163-188, 2023.
Article in English | MEDLINE | ID: mdl-37251991

ABSTRACT

Colletotrichum species are well-known plant pathogens, saprobes, endophytes, human pathogens and entomopathogens. However, little is known about Colletotrichum as endophytes of plants and cultivars including Citrusgrandis cv. "Tomentosa". In the present study, 12 endophytic Colletotrichum isolates were obtained from this host in Huazhou, Guangdong Province (China) in 2019. Based on morphology and combined multigene phylogeny [nuclear ribosomal internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (gapdh), chitin synthase 1 (chs-1), histone H3 (his3) actin (act), beta-tubulin (ß-tubulin) and glutamine synthetase (gs)], six Colletotrichum species were identified, including two new species, namely Colletotrichumguangdongense and C.tomentosae. Colletotrichumasianum, C.plurivorum, C.siamense and C.tainanense are identified as being the first reports on C.grandis cv. "Tomentosa" worldwide. This study is the first comprehensive study on endophytic Colletotrichum species on C.grandis cv. "Tomentosa" in China.

13.
Minim Invasive Ther Allied Technol ; 32(4): 153-162, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37051809

ABSTRACT

BACKGROUND: Robotic camera holders can overcome the shortcomings of human assistants, such as shaking and accidental rotation in endoscopic surgery. Robotic camera holder is not affected by the operation time and surgical position and reduces the size of the team. However, there is still controversy over the practicality of robotic camera holders. MATERIAL AND METHODS: We searched PubMed, Web of Science, Embase, Cochrane Library PubMed, Embase, Cochrane Library and Web of Science. The last database search was performed on 30 April 2022. Two reviewers independently reviewed the studies. RESULTS: A total of eight studies (n = 698, 354 controls and 344 robotic camera holders) were included in our analysis. The results showed that the robotic camera holder significantly outperformed human assistants on the frequency of lens cleaning (SMD, -0.48; 95% CI, -0.90 to -0.05) and inappropriate movements (MD, -3.57; 95% CI, -4.93 to -2.21). There was no difference in total operation time (MD, 6.99; 95% CI, -2.47 to 16.72), preparation time (MD, 2.43; 95% CI, -0.32 to 5.18) or blood loss (MD, 34.47; 95% CI, -8.05 to 76.98) between the robotic camera holder and human assistant. However, the robotic camera holder was significantly slower in the core operation (MD, 5.06; 95% CI, 1.18 to 8.94), and surgeons had mixed reviews of robotic systems. CONCLUSIONS: The robotic camera holder provided the surgeon with a highly stable environment. Although the robotic camera holder will not increase the total time, it still needs to improve the core operation time. There is much room for improvement in robotic camera holders. Further development of devices with intuitive control systems and a greater range of motion will be required to accommodate more complex surgeries.


Subject(s)
Laparoscopy , Robotic Surgical Procedures , Robotics , Surgeons , Humans , Robotic Surgical Procedures/methods , Laparoscopy/methods , Robotics/methods , Operative Time
14.
Food Res Int ; 165: 112544, 2023 03.
Article in English | MEDLINE | ID: mdl-36869531

ABSTRACT

Edible oils play important roles in biological functions, and triacylglycerols (TAGs) in edible oils are complex mixtures. This makes accurate TAGs quantitation quite difficult that bring economically motivated food adulteration. Herein, we demonstrated a strategy for accurate quantification of TAGs in edible oils, which could be applied in identification of olive oil adulteration. The results showed that the proposed strategy could significantly improve the accuracy of TAG content determination, reduce the relative error of fatty acids (FAs) content determination, and present a wider accurate quantitative range than that of gas chromatography-flame ionization detection. Most important, this strategy coupled with principal component analysis could be used to identify adulteration of high-priced olive oil with cheaper soybean oils, rapeseed oils or camellia oils at a lower concentration of 2%. These findings indicated that the proposed strategy could be regarded as a potential method for edible oils quality and authenticity analysis.


Subject(s)
Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Olive Oil , Gas Chromatography-Mass Spectrometry , Triglycerides
15.
Toxins (Basel) ; 15(3)2023 03 10.
Article in English | MEDLINE | ID: mdl-36977107

ABSTRACT

Peanuts are susceptible to aflatoxins produced by Aspergillus flavus. Exploring green, efficient, and economical ways to inhibit Aspergillus flavus is conducive to controlling aflatoxin contamination from the source. In this study, Ag-loaded titanium dioxide composites showed more than 90% inhibition rate against Aspergillus flavus under visible light irradiation for 15 min. More importantly, this method could also reduce the contaminated level of Aspergillus flavus to prevent aflatoxins production in peanuts, and the concentrations of aflatoxin B1, B2, and G2 were decreased by 96.02 ± 0.19%, 92.50 ± 0.45%, and 89.81 ± 0.52%, respectively. It was found that there are no obvious effects on peanut quality by evaluating the changes in acid value, peroxide value, and the content of fat, protein, polyphenols, and resveratrol after inhibition treatment. The inhibition mechanism was that these reactive species (•O2-, •OH-, h+, and e-) generated from photoreaction destroyed cell structures, then led to the reduced viability of Aspergillus flavus spores. This study provides useful information for constructing a green and efficient inhibition method for Aspergillus flavus on peanuts to control aflatoxin contamination, which is potentially applied in the field of food and agri-food preservation.


Subject(s)
Aflatoxins , Aspergillus flavus , Aspergillus flavus/metabolism , Arachis/chemistry , Aflatoxin B1/toxicity , Aflatoxin B1/metabolism
16.
Front Pharmacol ; 14: 1133655, 2023.
Article in English | MEDLINE | ID: mdl-36959857

ABSTRACT

A series of novel ferulic acid derivatives were designed and synthesized, and the twenty-one compounds were evaluated for their antiviral activities against Respiratory syncytial virus (RSV), herpes simplex virus type 1 (HSV-1), and enterovirus type 71 (EV71). These derivatives with the core structure of diphenyl acrylic acids had cis-trans isomers, which were confirmed by 1H NMR, HPLC, and UV-vis spectra for the first time. The A5 had a selective effect against RSV but no work on herpes simplex virus type 1 and enterovirus type 71, which showed a therapeutic index (TI) of 32 and was significantly better than ferulic acid. The A5 had no scavenging effect on free radicals, but the A2 as the degradation of A5 showed an obvious scavenging effect on DPPH· and ABTS+·. In addition, the A5 had no toxicity to endothelial cells and even showed a proliferative effect. Therefore, the A5 is worth further optimizing its structure as a lead compound and investigating the mechanism of inhibiting Respiratory syncytial virus.

17.
Biosens Bioelectron ; 225: 115102, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36724657

ABSTRACT

Growing studies focusing on nuclear acid detection via the emerging CRISPR technique demonstrate its promising application. However, limited works solve the identification of non-nucleic acid targets, especially multiple small molecules. To address challenges for point-of-care testing (POCT) in complex matrices for healthcare, environment, and food safety, we developed CRISPR Cas12a-powered highly sensitive, high throughput, intelligent POCT (iPOCT) for multiple small molecules based on a smartphone-controlled reader. As a proof of concept, aflatoxin B1 (AFB1), benzo[a]pyrene (BaP), and capsaicin (CAP) were chosen as multiple targets. First, three antigens were preloaded in independent microwells. Then, the antibody/antigen-induced fluorescent signals were consecutively transferred from the biotin-streptavidin to CRISPR/Cas12a system. Third, the fluorescent signals were recorded by a smartphone-controlled handheld dark-box readout. Under optimization, detection limits in AFB1, BaP, and CAP were 0.00257, 4.971, and 794.6 fg/mL with wide linear ranges up to four orders of magnitude. Using urine, water, soybean oil, wheat, and peanuts as the complex matrix, we recorded high selectivity, considerable recovery, repeatability, and high consistency comparison to HPLC-MS/MS methods. This work promises a practical intelligent POCT platform for multiple targets in lipid-soluble and water-soluble matrices and could be extensively applied for healthcare, environment, and food safety.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Tandem Mass Spectrometry , Aflatoxin B1 , Capsaicin , Coloring Agents , Point-of-Care Testing , Delivery of Health Care
18.
Phys Chem Chem Phys ; 25(7): 5627-5637, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36727641

ABSTRACT

One of the challenging problems in the research field of polymer nanocomposites is how to prepare nanocomposites with high grafting density and strong ability of dispersion at the same time. For nanocomposites composed of bimodal bidisperse polymer chains and nanoparticles, the above requirements can be met by rationally adjusting the ratio of long and short polymer chains. In this study, the process of grafting bimodal bidisperse polymer chains onto the surface of nanoparticles in a grafting-to manner was investigated via computer simulation and theoretical methods. Three grafting strategies were designed: first short then long (SL) system, both short and long (Both) system and first long then short (LS) system. An abnormal phenomenon for the Both system was found by analyzing the grafting density of long and short polymer chains on the surface of nanoparticles. We speculate that the reason for this anomalous phenomenon is the "depletion effect" brought about by the long chains in the Both system. We employ the Polymer Reference Interaction Site Model (PRISM) theory to investigate this anomaly in-depth. By comparing the radial distribution function (RDF) predicted by the PRISM theory with the RDF results obtained by the molecular dynamics (MD) simulation, we found that with the increase of the number of long chains in the system, the grafting density of short polymer chains on the nanoparticle surface showed an obvious upward trend. The "depletion effect" brought by long chains was the main reason for higher short chains' grafting density of the Both system compared to the SL system. Our findings provide effective guidance for the design of nanoparticle-grafted bimodal bidisperse polymer chains and provide a theoretical basis for experimentation and production of polymer nanocomposites with better performance.

19.
J Agric Food Chem ; 71(4): 2014-2025, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36688464

ABSTRACT

Rationally designing carriers to obtain efficient and stable immobilized enzymes for the production of food raw materials is always a challenge. In this work, hollow cube carbon (HMC) as a carrier of Candida rugosa lipase (CRL) was prepared to construct a Pickering interfacial biocatalysis system, which was applied to biphasic biocatalysis. For comparison, the nonporous carbon (HC) and porous MoS2 (HMoS2) were also designed. On these grounds, p-NPP and linolenic acid were selected as the representative substrates for hydrolysis and esterification reactions. Under the optimal conditions, the protein loading amount, specific activity, and expressed activity of CRL immobilized on HMC (HMC@CRL) were 167.2 mg g-1, 5.41 U mg-1, and 32.34 U/mg protein, respectively. In the "oil-water" biphase, the relative hydrolytic activity of HMC@CRL was higher than that of HC@CRL, HMoS2@CRL, and CRL by 50, 68, and 80%, respectively, as well as itself in one phase. Compared to other reports (1.13%), HMC@CRL demonstrated a satisfactory hydrolysis rate (3.02%) and was the fastest among all other biocatalysts in the biphase. Moreover, compared with the free CRL in one-phase system, the Pickering interfacial biphasic biocatalyst, HMC@CRL, exhibited a higher esterification rate (85%, 2.7-fold enhancement). Therefore, the HMC@CRL nanoreactors had more optimal performance in the field of biomanufacturing and food industry.


Subject(s)
Enzymes, Immobilized , Phytosterols , Biocatalysis , Enzyme Stability , Enzymes, Immobilized/metabolism , Lipase/metabolism , Nanotechnology , Phytosterols/metabolism , Esters
20.
Ann Hematol ; 102(3): 529-539, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36680600

ABSTRACT

Aplastic anemia (AA) is an auto-activated T cell-mediated bone marrow failure. Cyclosporine is often used to treat non-severe AA, which demonstrates a more heterogeneous condition than severe AA. The response rate to cyclosporine is only around 50% in non-severe AA. To better predict response to cyclosporine and pinpoint who is the appropriate candidate for cyclosporine, we performed phenotypic and functional T cell immune signature at single cell level by mass cytometry from 30 patients with non-severe AA. Unexpectedly, non-significant differences of T cell subsets were observed between AA and healthy control or cyclosporine-responder and non-responders. Interestingly, when screening the expression of co-inhibitory molecules, T cell trafficking mediators, and cytokines, we found an increase of cytotoxic T lymphocyte antigen 4 (CTLA-4) on T cells in response to cyclosporine and a lower level of CTLA-4 on CD8+ T cells was correlated to hematologic response. Moreover, a decreased expression of sphingosine-1-phosphate receptor 1 (S1P1) on naive T cells and a lower level of interleukin-9 (IL-9) on T helpers also predicted a better response to cyclosporine, respectively. Therefore, the T cell immune signature, especially in CTAL-4, S1P1, and IL-9, has a predictive value for response to cyclosporine. Collectively, our study implies that immune signature analysis of T cell by mass cytometry is a useful tool to make a strategic decision on cyclosporine treatment of AA.


Subject(s)
Anemia, Aplastic , T-Lymphocytes , Humans , Anemia, Aplastic/diagnosis , CD8-Positive T-Lymphocytes/metabolism , CTLA-4 Antigen/metabolism , Cyclosporine , Interleukin-9/metabolism , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...