Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Metab ; 36(7): 1482-1493.e7, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959862

ABSTRACT

Although human core body temperature is known to decrease with age, the age dependency of facial temperature and its potential to indicate aging rate or aging-related diseases remains uncertain. Here, we collected thermal facial images of 2,811 Han Chinese individuals 20-90 years old, developed the ThermoFace method to automatically process and analyze images, and then generated thermal age and disease prediction models. The ThermoFace deep learning model for thermal facial age has a mean absolute deviation of about 5 years in cross-validation and 5.18 years in an independent cohort. The difference between predicted and chronological age is highly associated with metabolic parameters, sleep time, and gene expression pathways like DNA repair, lipolysis, and ATPase in the blood transcriptome, and it is modifiable by exercise. Consistently, ThermoFace disease predictors forecast metabolic diseases like fatty liver with high accuracy (AUC > 0.80), with predicted disease probability correlated with metabolic parameters.


Subject(s)
Aging , Face , Metabolic Diseases , Humans , Middle Aged , Aged , Adult , Male , Female , Aged, 80 and over , Young Adult , Deep Learning , Body Temperature , Image Processing, Computer-Assisted
2.
Aging Cell ; : e14196, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845183

ABSTRACT

Stroke is a major threat to life and health in modern society, especially in the aging population. Stroke may cause sudden death or severe sequela-like hemiplegia. Although computed tomography (CT) and magnetic resonance imaging (MRI) are standard diagnosis methods, and artificial intelligence models have been built based on these images, shortage in medical resources and the time and cost of CT/MRI imaging hamper fast detection, thus increasing the severity of stroke. Here, we developed a convolutional neural network model by integrating four networks, Xception, ResNet50, VGG19, and EfficientNetb1, to recognize stroke based on 2D facial images with a cross-validation area under curve (AUC) of 0.91 within the training set of 185 acute ischemic stroke patients and 551 age- and sex-matched controls, and AUC of 0.82 in an independent data set regardless of age and sex. The model computed stroke probability was quantitatively associated with facial features, various clinical parameters of blood clotting indicators and leukocyte counts, and, more importantly, stroke incidence in the near future. Our real-time facial image artificial intelligence model can be used to rapidly screen and prediagnose stroke before CT scanning, thus meeting the urgent need in emergency clinics, potentially translatable to routine monitoring.

3.
Curr Opin Struct Biol ; 85: 102777, 2024 04.
Article in English | MEDLINE | ID: mdl-38310737

ABSTRACT

The development of anti-aging interventions requires quantitative measurement of biological age. Machine learning models, known as "aging clocks," are built by leveraging diverse aging biomarkers that vary across lifespan to predict biological age. In addition to traditional aging clocks harnessing epigenetic signatures derived from bulk samples, emerging technologies allow the biological age estimating at single-cell level to dissect cellular diversity in aging tissues. Moreover, imaging-based aging clocks are increasingly employed with the advantage of non-invasive measurement, making it suitable for large-scale human cohort studies. To fully capture the features in the ever-growing multi-modal and high-dimensional aging-related data and uncover disease associations, deep-learning based approaches, which are effective to learn complex and non-linear relationships without relying on pre-defined features, are increasingly applied. The use of big data and AI-based aging clocks has achieved high accuracy, interpretability and generalizability, guiding clinical applications to delay age-related diseases and extend healthy lifespans.


Subject(s)
Aging , Longevity , Humans , Machine Learning , Biomarkers
5.
Sci China Life Sci ; 66(5): 893-1066, 2023 05.
Article in English | MEDLINE | ID: mdl-37076725

ABSTRACT

Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.


Subject(s)
Cellular Senescence , Biomarkers/metabolism , Biological Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...