Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36080072

ABSTRACT

This paper fabricated a high-performance chitin nanofibers (ChNFs)-integrated bulk acoustic wave (BAW) humidity sensor with an asymmetric electrode configuration. The ChNFs were successfully prepared from crab shells and used as moisture-sensitive materials to compare the performance of quartz crystal microbalance (QCM) humidity sensors with symmetric and asymmetric electrode structures. The QCM humidity sensor with a smaller electrode area exhibited high sensitivity of 58.84 Hz/%RH, competitive response/recovery time of 30/3.5 s, and low humidity hysteresis of 2.5% RH. However, it is necessary to choose a suitable electrode diameter to balance the stability and sensitivity because the impedance analysis result showed that the reduction of the electrode diameter leads to a sharp decrease in the Q value (stability). Next, the possible humidity-sensitive mechanism of the ChNFs-integrated asymmetric n-m electrode QCM humidity sensor was discussed in detail. Finally, the reasons for the highest sensitivity of the asymmetric n-m electrode QCM humidity sensors having a smaller electrode diameter were analyzed in detail in terms of both mass sensitivity and fringing field effect. This work not only demonstrates that the chitin nanofiber is an excellent potential material for moisture detection, but also provides a new perspective for designing high-performance QCM humidity sensors.

2.
Nanomaterials (Basel) ; 12(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35335788

ABSTRACT

This paper investigated the effect of electrode materials on the performance of quartz crystal microbalance (QCM) sensors by means of theoretical calculation, experiment, and finite element analysis methods. First, we calculated the particle displacement amplitude and thus obtained the mass sensitivity function distribution of QCMs with gold, silver and aluminum electrodes, and found that the QCM with the gold electrode has the highest mass sensitivity at the center of the electrode. Then, we tested the humidity-sensing performance of QCMs with gold, silver, and aluminum electrodes using graphene oxide (GO) as the sensitive material, and found that the QCM with the gold electrode has higher humidity sensitivity. Finally, we used the finite element analysis software COMSOL Multiphysics to simulate the specific electrode material parameters that affect the sensitivity of the QCMs. The simulation results show that the density and Young's modulus of the electrode material parameters mainly affect the sensitivity. The results of this paper are instructive for optimizing QCM sensor performance and improving the capability of QCM quantitative analysis.

SELECTION OF CITATIONS
SEARCH DETAIL