Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cerebrovasc Dis ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38228101

ABSTRACT

Observational studies have suggested a possible relationship between gut microbiota (GM) and aneurysm development. However, the nature of this association remains unclear due to the inherent limitations of observational research, such as reverse causation and confounding factors. To address this knowledge deficit, this study aimed to investigate and establish a causal link between GM and aneurysm development.

2.
J Electrocardiol ; 80: 155-161, 2023.
Article in English | MEDLINE | ID: mdl-37422943

ABSTRACT

INTRODUCTION: Past research based on observations has suggested that the gut microbiome (GM) could play a role in developing arrhythmias and conduction blocks. Nonetheless, the nature of this association remains uncertain due to the potential for reverse causation and confounding factors in observational research. The aim of this investigation is to elucidate the causal relationship between GM and the development of arrhythmias as well as conduction blocks. METHODS: This study collected summary statistics regarding GM, arrhythmias, and conduction blocks. Two-sample Mendelian randomization (MR) analysis was carried out employing various methods, with inverse variance weighted being the primary approach, followed by weighted median, simple mode, MR-Egger, and MR-PRESSO. Moreover, the MR findings were corroborated through multiple sensitivity analyses. RESULTS: Among them, for atrial fibrillation and flutter (AF), phylum_Actinobacteria and genus_RuminococcaceaeUCG004 demonstrated a negative correlation, while order_Pasteurellales, family_Pasteurellaceae, and genus_Turicibacter were associated with an increased risk. In the case of paroxysmal tachycardia (PT), genus_Holdemania and genus_Roseburia were found to reduce risk. For atrioventricular block (AVB), order_Bifidobacteriales, family_Bifidobacteriaceae, and genus_Alistipes exhibited a negative correlation, whereas genus_CandidatusSoleaferrea showed a positive correlation. Concerning the left bundle-branch block (LBBB), family_Peptococcaceae appeared to decrease the risk, while genus_Flavonifractor was linked to an increased risk. Lastly, no causative GM was identified in the right bundle-branch block (RBBB) context. CONCLUSION: We have uncovered potential causal links between some GM, arrhythmias, and conduction blocks. This insight may aid in designing microbiome-based interventions for these conditions and their risk factors in future trials. Additionally, it could facilitate the discovery of novel biomarkers for targeted prevention strategies.


Subject(s)
Atrial Fibrillation , Gastrointestinal Microbiome , Humans , Mendelian Randomization Analysis , Electrocardiography , Bundle-Branch Block
3.
Cardiol Res Pract ; 2022: 6192053, 2022.
Article in English | MEDLINE | ID: mdl-36060429

ABSTRACT

Tumor necrosis factor-alpha (TNF-α) plays an important role in coronary heart disease (CHD), a chronic inflammatory process. Meanwhile, this pro-inflammatory factor is also involved in the pathogenesis of autoimmune diseases such as rheumatoid arthritis (RA). Patients with RA correspond to a higher risk of CHD. TNF-α antagonist, one of the main treatments for RA, may reduce the risk of CHD in patients with RA. This review summarizes the pathogenesis of TNF-α in CHD and discusses the relationship between TNF-α antagonist and CHD in patients with RA.

SELECTION OF CITATIONS
SEARCH DETAIL
...