Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 44(8)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38148154

ABSTRACT

SCN2A encodes NaV1.2, an excitatory neuron voltage-gated sodium channel and a major monogenic cause of neurodevelopmental disorders, including developmental and epileptic encephalopathies (DEE) and autism. Clinical presentation and pharmocosensitivity vary with the nature of SCN2A variant dysfunction and can be divided into gain-of-function (GoF) cases with pre- or peri-natal seizures and loss-of-function (LoF) patients typically having infantile spasms after 6 months of age. We established and assessed patient induced pluripotent stem cell (iPSC) - derived neuronal models for two recurrent SCN2A DEE variants with GoF R1882Q and LoF R853Q associated with early- and late-onset DEE, respectively. Two male patient-derived iPSC isogenic pairs were differentiated using Neurogenin-2 overexpression yielding populations of cortical-like glutamatergic neurons. Functional properties were assessed using patch clamp and multielectrode array recordings and transcriptomic profiles obtained with total mRNA sequencing after 2-4 weeks in culture. At 3 weeks of differentiation, increased neuronal activity at cellular and network levels was observed for R1882Q iPSC-derived neurons. In contrast, R853Q neurons showed only subtle changes in excitability after 4 weeks and an overall reduced network activity after 7 weeks in vitro. Consistent with the reported efficacy in some GoF SCN2A patients, phenytoin (sodium channel blocker) reduced the excitability of neurons to the control levels in R1882Q neuronal cultures. Transcriptomic alterations in neurons were detected for each variant and convergent pathways suggested potential shared mechanisms underlying SCN2A DEE. In summary, patient iPSC-derived neuronal models of SCN2A GoF and LoF pathogenic variants causing DEE show specific functional and transcriptomic in vitro phenotypes.


Subject(s)
Induced Pluripotent Stem Cells , Spasms, Infantile , Humans , Male , Induced Pluripotent Stem Cells/metabolism , Seizures/genetics , Spasms, Infantile/genetics , Spasms, Infantile/metabolism , Phenotype , Neurons/metabolism , NAV1.2 Voltage-Gated Sodium Channel/genetics
2.
EBioMedicine ; 84: 104244, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36088682

ABSTRACT

BACKGROUND: De novo missense variants in KCNQ5, encoding the voltage-gated K+ channel KV7.5, have been described to cause developmental and epileptic encephalopathy (DEE) or intellectual disability (ID). We set out to identify disease-related KCNQ5 variants in genetic generalized epilepsy (GGE) and their underlying mechanisms. METHODS: 1292 families with GGE were studied by next-generation sequencing. Whole-cell patch-clamp recordings, biotinylation and phospholipid overlay assays were performed in mammalian cells combined with homology modelling. FINDINGS: We identified three deleterious heterozygous missense variants, one truncation and one splice site alteration in five independent families with GGE with predominant absence seizures; two variants were also associated with mild to moderate ID. All missense variants displayed a strongly decreased current density indicating a loss-of-function (LOF). When mutant channels were co-expressed with wild-type (WT) KV7.5 or KV7.5 and KV7.3 channels, three variants also revealed a significant dominant-negative effect on WT channels. Other gating parameters were unchanged. Biotinylation assays indicated a normal surface expression of the variants. The R359C variant altered PI(4,5)P2-interaction. INTERPRETATION: Our study identified deleterious KCNQ5 variants in GGE, partially combined with mild to moderate ID. The disease mechanism is a LOF partially with dominant-negative effects through functional deficits. LOF of KV7.5 channels will reduce the M-current, likely resulting in increased excitability of KV7.5-expressing neurons. Further studies on network level are necessary to understand which circuits are affected and how this induces generalized seizures. FUNDING: DFG/FNR Research Unit FOR-2715 (Germany/Luxemburg), BMBF rare disease network Treat-ION (Germany), foundation 'no epilep' (Germany).


Subject(s)
Epilepsy, Generalized , Epilepsy , Intellectual Disability , Animals , Epilepsy/genetics , Epilepsy, Generalized/diagnosis , Epilepsy, Generalized/genetics , Humans , Intellectual Disability/genetics , Mammals , Mutation , Phospholipids
3.
Data Brief ; 32: 106148, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32904362

ABSTRACT

We employed electrophysiological and fluorescence imaging techniques to describe the characteristics of a novel type of neuron discovered in the mouse dorsal striatum. Transgenic mice that express YFP-tagged channelrhodopsin-2 (ChR2) in neurons driven by the promoter for tyrosine hydroxylase (TH) were used and the intrinsic electrical properties of YFP-positive neurons in the dorsal striatum of these mice were characterized using whole-cell patch clamping in acute brain slices. Passive membrane properties - such as membrane capacitance, resting membrane potential and input resistance -and action potential properties- such as amplitude, kinetics and adaptation - were extracted from raw data files. Filling these neurons with neurobiotin enabled visualization of neuronal morphology via immunohistochemical labeling with streptavidin-conjugated fluorophore. Subsequent two-photon imaging allowed analyses of morphological properties such as somaticsize, dendritic branching (Sholl analysis) and density of dendritic spines. Unbiased analyses and hierarchical clustering of both morphological and functional data allowed us to identify a previously undescribed type of striatal neuron with unique properties. To facilitate identification of this new cell type, an end-to-end automated electrophysiology pipeline was developed that extracts relevant parameters and determines striatal neuron identity using neural-network based classifiers. These data and the software tool will permit other investigators to identify this novel type of neuron in their studiesand thereby better understand theroles thatthese neuronsplay in dorsal striatum circuitry.

4.
ACS Chem Neurosci ; 11(14): 2066-2076, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32519838

ABSTRACT

GPR52 is a Gαs-coupled orphan receptor identified as a putative target for the treatment of schizophrenia. The unique expression and signaling profile of GPR52 in key areas of dopamine and glutamate dysregulation suggests its activation may resolve both cortical and striatal dysfunction in the disorder. GPR52 mRNA is enriched in the striatum, almost exclusively on dopamine D2-expressing medium spiny neurons (MSNs), and to a lesser extent in the cortex, predominantly on D1-expressing pyramidal neurons. Synthetic, small molecule GPR52 agonists are effective in preclinical models of psychosis; however, the relative contribution of cortical and striatal GPR52 is unknown. Here we show that the GPR52 agonist, 3-BTBZ, inhibits phencyclidine-induced hyperlocomotor activity to a greater degree than amphetamine-induced motor effects, suggesting a mechanism beyond functional antagonism of striatal dopamine D2 receptor signaling. Using DARPP-32 phosphorylation and electrophysiological recordings in either striatopallidal or striatonigral MSNs, we were surprised to find no significant effect of 3-BTBZ in striatopallidal MSNs, but GPR52-mediated effects in striatonigral MSNs, where its mRNA is absent. 3-BTBZ increases phosphorylation of T75 on DARPP-32 in striatonigral MSNs, an effect that was dependent on cortical inputs. A similar role for GPR52 in regulating extrastriatal glutamatergic drive onto striatonigral MSNs was also evident in recordings of spontaneous excitatory postsynaptic currents and was shown to be dependent on the metabotropic glutamate (mGlu) receptor subtype 1. Our results demonstrate that GPR52-mediated regulation of striatal function depends heavily on extrastriatal inputs, which may further support its utility as a novel target for the treatment of schizophrenia.


Subject(s)
Corpus Striatum , Receptors, Dopamine D2 , Animals , Corpus Striatum/metabolism , Excitatory Postsynaptic Potentials , Mice , Mice, Transgenic , Neurons/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism
6.
Front Neural Circuits ; 13: 32, 2019.
Article in English | MEDLINE | ID: mdl-31164808

ABSTRACT

The striatum is predominantly composed of medium spiny projection neurons, with the remaining neurons consisting of several types of interneurons. Among the interneurons are a group of cells that express tyrosine hydroxylase (TH). Although the intrinsic electrical properties of these TH-expressing interneurons have been characterized, there is no agreement on the number of TH-expressing cell types and their electrical properties. Here, we have used transgenic mice in which YFP-tagged channelrhodopsin-2 (ChR2) was expressed in potential TH-expressing cells in a Cre-dependent manner. We found that the YFP+ neurons in the striatum were heterogeneous in their intrinsic electrical properties; unbiased clustering indicated that there are three main neuronal subtypes. One population of neurons had aspiny dendrites with high-frequency action potential (AP) firing and plateau potentials, resembling the TH interneurons (THIN) described previously. A second, very small population of labeled neurons resembled medium-sized spiny neurons (MSN). The third population of neurons had dendrites with an intermediate density of spines, showed substantial AP adaptation and generated prolonged spikes. This type of striatal neuron has not been previously identified in the adult mouse and we have named it the Frequency-Adapting Neuron with Spines (FANS). Because of their distinctive properties, FANS may play a unique role in striatal information processing.


Subject(s)
Corpus Striatum/cytology , Interneurons/classification , Interneurons/cytology , Animals , Mice , Mice, Transgenic
7.
J Assoc Res Otolaryngol ; 16(4): 473-86, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25985874

ABSTRACT

The dorsal cochlear nucleus (DCN) is a major subdivision of the mammalian cochlear nucleus (CN) that is thought to be involved in sound localization in the vertical plane and in feature extraction of sound stimuli. The main principal cell type (pyramidal cells) integrates auditory and non-auditory inputs, which are considered to be important in performing sound localization tasks. This study aimed to investigate the histological development of the CD-1 mouse DCN, focussing on the postnatal period spanning the onset of hearing (P12). Fluorescent Nissl staining revealed that the three layers of the DCN were identifiable as early as P6 with subsequent expansion of all layers with age. Significant increases in the size of pyramidal and cartwheel cells were observed between birth and P12. Immunohistochemistry showed substantial changes in synaptic distribution during the first two postnatal weeks with subsequent maturation of the presumed mossy fibre terminals. In addition, GFAP immunolabelling identified several glial cell types in the DCN including the observation of putative tanycytes for the first time. Each glial cell type had specific spatial and temporal patterns of maturation with apparent rapid development during the first two postnatal weeks but little change thereafter. The rapid maturation of the structural organization and DCN components prior to the onset of hearing possibly reflects an influence from spontaneous activity originating in the cochlea/auditory nerve. Further refinement of these connections and development of the non-auditory connections may result from the arrival of acoustic input and experience dependent mechanisms.


Subject(s)
Cochlear Nucleus/cytology , Cochlear Nucleus/growth & development , Animals , Hearing , Mice , Neuroglia/physiology , Presynaptic Terminals/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...