Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 247: 120803, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37922638

ABSTRACT

The widespread use of tetracycline (TC) inevitably leads to its increasing emission into groundwater. However, the potential risks of TC to denitrification in groundwater remain unclear. In this study, the effects of TC on denitrification in groundwater were systematically investigated at both the protein and gene levels from the electron behavior aspect for the first time. The results showed that increasing TC from 0 to 10 µg·L-1 decreased the nitrate removal rate from 0.41 to 0.26 mg·L-1·h-1 while enhancing the residual nitrite concentration from 0.52 mg·L-1 to 50.60 mg·L-1 at the end of the experiment. From a macroscopic view, 10 µg·L-1 TC significantly inhibited microbial growth and altered microbial community structure and function in groundwater, which induced the degeneration of denitrification. From the electron behavior aspect (the electron production, electron transport and electron consumption processes), 10 µg·L-1 TC decreased the concentration of electron donors (nicotinamide adenine dinucleotide, NADH), electron transport system activity, and denitrifying enzyme activities at the protein level. At the gene level, 10 µg·L-1 TC restricted the replication of genes related to carbon metabolism, the electron transport system and denitrification. Moreover, discrepant inhibitory effects of TC on individual denitrification steps, which led to the accumulation of nitrite, were observed in this study. These results provide the information that is necessary for evaluating the potential environmental risk of antibiotics on groundwater denitrification and bring more attention to their effects on geochemical nitrogen cycles.


Subject(s)
Groundwater , Nitrites , Denitrification , Tetracycline/pharmacology , Anti-Bacterial Agents/pharmacology , Nitrates/metabolism , Groundwater/chemistry
2.
Bioresour Technol ; 382: 129188, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37196743

ABSTRACT

Reactors were established to study the feasibility of the direct addition of modified biochar to alleviate the long-term stress of oxytetracycline (OTC) on aerobic denitrification (AD) and improve the stability of the system. The results showed that OTC stimulated at µg/L, and inhibited at mg/L. The higher the concentration of OTC, the longer the system was affected. The addition of biochar, without immobilization, improved the tolerance of community, alleviated the irreversible inhibition effect of OTC, and maintained a high denitrification efficiency. Overall, the main mechanisms of AD enhancement by biochar under OTC stress were: enhancing the bacteria metabolic activity, strengthening sludge structure and substrate transport, and improving the community stability and diversity. This study confirmed that direct addition of biochar could effectively alleviate the negative effect of antibiotics on the microorganisms, strengthen the AD, which provided a new idea to broaden the application of AD technology in livestock wastewater.


Subject(s)
Oxytetracycline , Oxytetracycline/pharmacology , Denitrification , Anti-Bacterial Agents/pharmacology , Charcoal/pharmacology
3.
Bioresour Technol ; 347: 126673, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35007733

ABSTRACT

A novel composite carrier (ICME-PS) was formed by coupling polyurethane sponge carriers (PS) with different pore sizes (15, 25, 40 ppi) and iron-carbon micro-electrolysis (ICME), which was used for enrichment of anammox bacteria and stable operation under no strict anaerobic condition. An increase of 5.67%-38.55% in specific anammox activity (SAA), an significant enhancement of biofilm stability and an improvement of 14.61%-42.38% in Ca.Brocadia were observed in ICME-PS, compared to PS carriers. ICME played a dual role: 1) contributed to the formation of an anaerobic microenvironment; 2) used for nitrogen cycle reactions. Additionally, small-pore carriers with highest biofilm stability can be used in high shear environments, while medium-pore carriers achieved the highest SAA in stable environments. Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis indicated that ICME application reduced the energy barrier and improved aggregation performance. This study designed a novel composite carrier to broaden the application of anammox under no strict anaerobic condition.


Subject(s)
Bioreactors , Carbon , Anaerobic Ammonia Oxidation , Anaerobiosis , Bacteria , Electrolysis , Iron , Nitrogen , Oxidation-Reduction , Polyurethanes
4.
Bioresour Technol ; 341: 125730, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34418843

ABSTRACT

The feasibility of applying electric fields to mitigate inhibition of tetracycline (TC) on anammox process and improve system stability was evaluated in this study. Three electric field intensities of 1, 3 and a variable intensity of 1-6 V (VEF) were used to optimize electric field intensity under gradually increasing addition of TC (0.5, 2 and 10 mg L-1). Results showed that the application of electric fields (3 V and VEF) could improve TC tolerance and keep relatively high-efficiency nitrogen removal performance, especially at TC ≥ 2 mg L-1. Furthermore, applying electric fields contributed to mitigate irreversible inhibition and improve the stability of community structure. Underlying mechanism analysis indicated that the main mechanism of applying electric fields to mitigate inhibition relies on sludge structure strengthening. This study explored a novel strategy to reduce the inhibition of antibiotics on microbial denitrification and broaden the application of anammox in industrial water treatment.


Subject(s)
Bioreactors , Denitrification , Anti-Bacterial Agents , Nitrogen/analysis , Oxidation-Reduction , Sewage , Tetracycline , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...