Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 360: 121112, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733847

ABSTRACT

Assessing net primary productivity (NPP) dynamics and the contribution of land-use change (LUC) to NPP can help guide scientific policy to better restore and control the ecological environment. Since 1999, the "Green for Grain" Program (GGP) has strongly affected the spatial and temporal pattern of NPP on the Loess Plateau (LP); however, the multifaceted impact of phased vegetation engineering measures on NPP dynamics remains unclear. In this study, the Carnegie-Ames-Stanford Approach (CASA) model was used to simulate NPP dynamics and quantify the relative contributions of LUC and climate change (CC) to NPP under two different scenarios. The results showed that the average NPP on the LP increased from 240.7 gC·m-2 to 422.5 gC·m-2 from 2001 to 2020, with 67.43% of the areas showing a significant increasing trend. LUC was the main contributor to NPP increases during the study period, and precipitation was the most important climatic factor affecting NPP dynamics. The cumulative amount of NPP change caused by LUC (ΔNPPLUC) showed a fluctuating growth trend (from 46.23 gC·m-2 to 127.25 gC·m-2), with a higher growth rate in period ΙΙ (2010-2020) than in period Ι (2001-2010), which may be related to the accumulation of vegetation biomass and the delayed effect of the GGP on NPP. The contribution rate of LUC to increased NPP in periods Ι and ΙΙ was 101.2% and 51.2%, respectively. Regarding the transformation mode, the transformation of grassland to forest had the greatest influence on ΔNPPLUC. Regarding land-use type, the increased efficiency of NPP was improved in cropland, grassland, and forest. This study provides a scientific basis for the scientific management and development of vegetation engineering measures and regional sustainable development.


Subject(s)
Climate Change , Conservation of Natural Resources , Ecosystem
2.
J Hazard Mater ; 473: 134538, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38761759

ABSTRACT

Both sediments and microplastics (MPs) are medias of heavy metals (HMs) in river ecosystems. This study investigated HMs (Mn, Cr, V, As, Cu, Co, Cd, Pb, and Ni) concentration and driving factors for competitive enrichment between hyporheic sediments versus MPs. The medias basic characteristics indicated that the sediments were mostly sand and rich in Fe2O3; three polymer types were identified, with blue, fragment, less than 500 µm being the main types of MPs. The results have shown that the average content of extracted HMs in MPs was much higher than that of the same metals accumulated in sediments. HMs in sediments and MPs reached heavily polluted at some points, among which As and Cd were ecological risks. Electrostatic adsorption and surface complexation, and biofilm-mediated and organic matter complexation were the interaction mechanism of HMs with sediments and MPs. Further, the driving factors affecting the distribution of HMs in the two carriers were analyzed by multivariate statistical analysis. The results demonstrated that carrier characteristics, hydrochemical factors, and the inherent metal load of MPs were the main causes of the high HMs content. These findings improved our understanding of HMs fate and environmental risks across multiple medias.

3.
Sci Total Environ ; 926: 171712, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38494024

ABSTRACT

Understanding the factors driving propagation from meteorological to hydrological drought is crucial for drought mitigation. In this study, an integrated framework based on the Soil and Water Assessment Tool model, standardised drought indices and Geographical Detector were used to investigate how and to what extent watershed properties and human activities affect the spatial heterogeneity of drought propagation in the Wei River Basin, a typical arid and semi-arid region in China. Results indicated that (1) spatially, the propagation times increased from southwest to northeast. Seasonally, the propagation was shorter and stronger in summer and autumn. (2) The aridity index significantly affected the spatial distribution of drought propagation time for the entire basin, especially in summer, while human activities primarily drove spatial distribution in the sub-basins. The explanatory power of any two independent factors was non-linearly enhanced after the interaction. (3) Watershed properties potentially impacted the anthropogenic driving factor of drought propagation. Strong anthropogenic effects on drought propagation often occurred in watersheds with moderate drought levels, steep slopes, low elevations, and small areas, and the key factors varied seasonally. These findings help elucidate the multifaceted effects of watershed properties and human activities on drought propagation. The proposed framework and the results of this study provide valuable guidance for formulating precise drought control strategies in the Wei River Basin and worldwide.

4.
J Environ Manage ; 345: 118843, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37598491

ABSTRACT

Runoff and baseflow are two hydrological elements most closely involved in water-resource management. Defining the response of runoff/baseflow to meteorological drought (MD) is helpful for designing precise drought resisting measures. Thus, Pearson correlation coefficients and mutual information scores between runoff/baseflow and MD in five sub-basins of the Weihe River Basin (WRB) were estimated on a weekly scale, and the best response times of runoff/baseflow to MD on annual and calendar months were determined according to the maximum degree of response. Furthermore, the spatial and seasonal differences in response characteristics in the WRB were discussed and the baseflow index (BFI) was introduced to further explain the propagation process of MD to runoff/baseflow. The results showed that (1) in addition to the response time, the transition sequences of MD propagating to runoff and baseflow varied across basins due to the specific basin properties; (2) Response time of runoff to MD was related to BFI value and showed significant seasonality and hydrological periodicity. In summer and autumn (wet season), the response was faster and stronger, whereas the opposite occurred in winter and spring (normal/dry season); (3) BFI values indicated the main path of drought propagation, explaining the variation in response time between basins and seasons; hence, it can be used to simply and effectively determine the propagation speed of MD to runoff. This study clarified the response characteristics of the runoff process to MD and enhanced our understanding of the drought propagation process, which is crucial for mitigating and managing drought-related hazards.


Subject(s)
Droughts , Meteorology , Seasons , Rivers , Hydrology
5.
J Environ Manage ; 344: 118320, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37352629

ABSTRACT

Land cover change (LCC) is both a consequence and a cause of global environmental change. This paper attempts to construct a framework to reveal the driving mechanism and ecological effects of different ecological factors under LCC and to explore the ecological characteristics of future LCC. A rule-mining framework based on a land expansion analysis strategy (LEAS) in the patch-generating land use simulation (PLUS) model was used to analyze the drivers of LCC. Neighborhood analysis and ecological effect index were used to investigate multiple ecological effects of LCC. Remote sensing-based ecological indices (RSEI) and the PLUS and stepwise regression model were introduced to explore and predict the integrated ecological effect of LCC. Focusing on the Weihe River basin, study's main drivers of LCC were precipitation, temperature, elevation, population, water table depth, proximity to governments and motorways, GDP, and topsoil organic carbon were the main drivers of LCC. Change directionality were similar for the effects of greenness and biomass formation but opposite for summertime and wintertime temperature. In addition, the conversion of land cover types to cropland had the most significant integrated ecological effect, followed by forest, grassland-shrubland, and other types. The RSEI is predicted to rise to 0.77 in 2030, and the areas where the ecological quality grade will improve and decrease are concentrated on the east and west sides of Ziwuling Mountain, respectively. The findings of this study have practical significance for land management and ecological protection.


Subject(s)
Environmental Monitoring , Rivers , Forests , China , Remote Sensing Technology , Ecosystem , Conservation of Natural Resources
6.
J Environ Manage ; 267: 110651, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32349958

ABSTRACT

A healthy aquatic ecosystem plays an important role in the operation of nature and the survival of human beings. Understanding the mechanism of its interaction with the habitat process is conducive to formulating targeted ecological recovery plans. In this study, fish and macroinvertebrates were collected from 49 investigation sites in the Weihe River basin, China, during periods of the summer and the autumn of 2017. Cluster analysis and canonical correlation analysis (CCA) were used to analyze the similarity of community distribution of fish and macroinvertebrates and their response to environmental variables. The biological integrity index of fish (F-IBI) and benthic-macroinvertebrate (B-IBI) was introduced to evaluate the aquatic ecological health. The results showed that fish communities were more coherent than macroinvertebrate communities. The distinguished response to ecological factors was identified for fish and macroinvertebrates. The ecological factors of total nitrogen, conductivity and river width have significant effects on both fish and macroinvertebrate communities. In addition, the fish community was significantly influenced by chlorine, fluorine, pH and flow velocity, while the macroinvertebrate community was significantly influenced by bicarbonate and water depth. The differences in community structure and response to ecological factors between communities were amplified in their environmental quality scores. Although F-IBI and B-IBI tend to be consistent temporally, the correlation is not significant. B-IBI showed decreasing gradient of ecological health status in the downstream area, while F-IBI tended to be different across river systems, which further illustrated the differences in the response of fish and macroinvertebrates to environmental variables.


Subject(s)
Ecosystem , Invertebrates , Animals , Biota , China , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...