Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1752-1775, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38914490

ABSTRACT

Thermophilic cyanobacteria are prokaryotic organisms that possess exceptional heat-resistant characteristics. This group serves as an excellent model for investigating the heat tolerance of higher photosynthetic organisms, including higher plants, some protists (such as algae and euglena), and bacteria. Analyzing the mechanisms of high-temperature adaptation in thermophilic cyanobacteria can enhance our understanding of how photosynthetic organisms and microorganisms tolerate high temperatures at the molecular level. Additionally, these thermotolerant cyanobacteria have the potential to contribute to breeding heat-tolerant plants and developing microbial cell factories. This review summarizes current research on thermophilic cyanobacteria, focusing on their ecology, morphology, omics studies, and mechanisms of high-temperature tolerance. It offers insight into the potential biotechnological applications of thermophilic cyanobacteria and highlights future research opportunities. Specifically, attention is given to the photosynthetic physiology and metabolism of cyanobacteria, and the molecular basis of heat-tolerance mechanisms in thermophilic cyanobacteria is explored.


Subject(s)
Adaptation, Physiological , Biotechnology , Cyanobacteria , Hot Temperature , Photosynthesis , Cyanobacteria/physiology , Cyanobacteria/metabolism , Thermotolerance
2.
Microorganisms ; 12(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38792770

ABSTRACT

In cyanobacteria and chloroplasts (in algae and plants), ATP synthase plays a pivotal role as a photosynthetic membrane complex responsible for producing ATP from adenosine diphosphate and inorganic phosphate, utilizing a proton motive force gradient induced by photosynthesis. These two ATP synthases exhibit similarities in gene organization, amino acid sequences of subunits, structure, and functional mechanisms, suggesting that cyanobacterial ATP synthase is probably the evolutionary precursor to chloroplast ATP synthase. In this review, we explore the precise synthesis and assembly of ATP synthase subunits to address the uneven stoichiometry within the complex during transcription, translation, and assembly processes. We also compare the regulatory strategies governing ATP synthase activity to meet varying energy demands in cyanobacteria and chloroplasts amid fluctuating natural environments. Furthermore, we delve into the role of ATP synthase in stress tolerance and photosynthetic carbon fixation efficiency in oxygenic photosynthetic organisms (OPsOs), along with the current researches on modifying ATP synthase to enhance carbon fixation efficiency under stress conditions. This review aims to offer theoretical insights and serve as a reference for understanding the functional mechanisms of ATP synthase, sparking innovative ideas for enhancing photosynthetic carbon fixation efficiency by utilizing ATP synthase as an effective module in OPsOs.

3.
J Biotechnol ; 364: 1-4, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36702257

ABSTRACT

Isomaltulose is a promising functional sweetener with broad application prospects in the food industry. Currently, isomaltulose is mainly produced through bioconversion processes based on the isomerization of sucrose, the economic feasibility of which is influenced by the cost of sucrose feedstocks, the biocatalyst preparation, and product purification. Cyanobacterial photosynthetic production utilizing solar energy and carbon dioxide represents a promising route for the supply of sugar products, which can promote both carbon reduction and green production. Previously, some cyanobacteria strains have been successfully engineered for synthesis of sucrose, the main feedstock for isomaltulose production. In this work, we introduced different sucrose isomerases into Synechococcus elongatus PCC 7942 and successfully achieved the isomaltulose synthesis and accumulation in the recombinant strains. Combinatory expression of an Escherichia coli sourced sucrose permease CscB with the sucrose isomerases led to efficient secretion of isomaltulose and significantly elevated the final titer. During a 6-day cultivation, 777 mg/L of isomaltulose was produced by the engineered Synechococcus cell factory. This work demonstrated a new route for isomaltulose biosynthesis utilizing carbon dioxide as the substrate, and provided novel understandings for the plasticity of cyanobacterial photosynthetic metabolism network.


Subject(s)
Carbon Dioxide , Synechococcus , Carbon Dioxide/metabolism , Synechococcus/genetics , Synechococcus/metabolism , Photosynthesis , Sucrose/metabolism , Isomerases/metabolism , Metabolic Engineering
4.
Front Bioeng Biotechnol ; 10: 925311, 2022.
Article in English | MEDLINE | ID: mdl-35845416

ABSTRACT

Cyanobacteria are a promising photosynthetic chassis to produce biofuels, biochemicals, and pharmaceuticals at the expense of CO2 and light energy. Glycogen accumulation represents a universal carbon sink mechanism among cyanobacteria, storing excess carbon and energy from photosynthesis and may compete with product synthesis. Therefore, the glycogen synthesis pathway is often targeted to increase cyanobacterial production of desired carbon-based products. However, these manipulations caused severe physiological and metabolic impairments and often failed to optimize the overall performance of photosynthetic production. Here, in this work, we explored to mobilize the glycogen storage by strengthening glycogen degradation activities. In Synechococcus elongatus PCC 7942, we manipulated the abundances of glycogen phosphorylase (GlgP) with a theophylline dose-responsive riboswitch approach, which holds control over the cyanobacterial glycogen degradation process and successfully regulated the glycogen contents in the recombinant strain. Taking sucrose synthesis as a model, we explored the effects of enhanced glycogen degradation on sucrose production and glycogen storage. It is confirmed that under non-hypersaline conditions, the overexpressed glgP facilitated the effective mobilization of glycogen storage and resulted in increased secretory sucrose production. The findings in this work provided fresh insights into the area of cyanobacteria glycogen metabolism engineering and would inspire the development of novel metabolic engineering approaches for efficient photosynthetic biosynthesis.

5.
Sheng Wu Gong Cheng Xue Bao ; 38(2): 592-604, 2022 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-35234384

ABSTRACT

Cyanobacteria are important photosynthetic autotrophic microorganisms and are considered as one of the most promising microbial chassises for photosynthetic cell factories. Glycogen is the most important natural carbon sink of cyanobacteria, playing important roles in regulating its intracellular carbon distributions. In order to optimize the performances of cyanobacterial photosynthetic cell factories and drive more photosynthetic carbon flow toward the synthesis of desired metabolites, many strategies and approaches have been developed to manipulate the glycogen metabolism in cyanobacteria. However, the disturbances on glycogen metabolism usually cause complex effects on the physiology and metabolism of cyanobacterial cells. Moreover, the effects on synthesis efficiencies of different photosynthetic cell factories usually differ. In this manuscript, we summarized the recent progress on engineering cyanobacterial glycogen metabolism, analyzed and compared the physiological and metabolism effects caused by engineering glycogen metabolism in different cyanobacteria species, and prospected the future trends of this strategy on optimizing cyanobacterial photosynthetic cell factories.


Subject(s)
Cyanobacteria , Carbon/metabolism , Carbon Dioxide/metabolism , Cyanobacteria/genetics , Cyanobacteria/metabolism , Glycogen/metabolism , Metabolic Engineering , Photosynthesis/physiology
6.
Sheng Wu Gong Cheng Xue Bao ; 35(8): 1411-1423, 2019 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-31441612

ABSTRACT

Biorefinery technologies provide promising solutions to achieve sustainable development facing energy and environment crisis, while abundant sugar feedstock is an essential basis for biorefinery industries. Photosynthetic production of sucrose with cyanobacteria is an alternative sugar feedstock supply route with great potentials. Driven by solar energy, cyanobacteria photosynthetic cell factory could directly convert carbon dioxide and water into sucrose, and such a process could simultaneously reduce carbon emissions and supply sugar feedstocks. Here we introduced the history and updated the state-of-the-art on development of cyanobacteria cell factories for photosynthetic production of sucrose, summarized the progress and problems on mechanisms of sucrose synthesis, metabolic engineering strategies and technology expansions, and finally forecasted the future development direction in this area.


Subject(s)
Cyanobacteria , Sucrose , Carbon Dioxide , Metabolic Engineering , Photosynthesis
7.
Biosens Bioelectron ; 143: 111613, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31450095

ABSTRACT

Incorporating elements of triple-helix aptamer probes (TAP), catalyzed hairpin assembly (CHA) signal amplification and host-guest recognition, a novel "signal-on" sensing strategy for sensitive electrochemical quantification of tetracycline (TC) was reported unprecedentedly. TAP was formed involving an aptamer loop, two-segment stems and a triplex oligonucleotide serving as trigger probe. Then, the trigger probe would be released from TAP once the target presented due to the conformational variation of TAP induced by aptamer binding event, sparking off the upcoming CHA amplification reaction, in which two coexisting DNA hairpins (H1 and H2 both modified with the electroactive molecules) would hybridize into plentiful H1-H2 double helices. Afterwards, the Exonuclease III was added, demolishing double helices and simultaneously releasing plentiful electroactive molecules which were capable of diffusing onto the electrode surface under the assistance of ß-cyclodextrin due to host-guest recognition, where appreciable signals were enriched and generated. As thus, considerably slight amounts of targets though, emitted trigger probes, yet efficiently engining spectacular CHA cycles of reactions through which amplified signals were yielded, and in turn progressively enabling the sensitive target detection done. Under optimal conditions, the growing signal stayed a linear relation along with the logarithm of the target concentrations ranging from 0.2 nM to 100 nM, the detection limit reaching as low as 0.13 nM. This approach was desirable regarding to sensitivity, detection limit and range, prospectively rendering a service for diverse targets detection by easily replacing the matched aptamer loop of TAP.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Biosensing Techniques , Electrochemical Techniques , Tetracycline/isolation & purification , Anti-Bacterial Agents/chemistry , Aptamers, Nucleotide/chemistry , DNA/chemistry , Electrodes , Exodeoxyribonucleases/chemistry , Nucleic Acid Amplification Techniques , Tetracycline/chemistry
8.
Front Microbiol ; 9: 1182, 2018.
Article in English | MEDLINE | ID: mdl-29915570

ABSTRACT

(S)-equol is one of the major metabolites of daidzein that is produced by human and animal gut bacteria. Most of the physiological functions of soybean isoflavones, such as anti-oxidative activity, anti-cancer activity, and cardiovascular protection have been ascribed to (S)-equol. However, only 30-50% people contain this kind of equol-producing bacteria, and therefore are able to convert daidzein to (S)-equol. Administration of (S)-equol may be more beneficial than soybean isoflavones. The aim of this study was to construct an engineered (S)-equol resistant Escherichia coli to enhance (S)-equol production in vitro. First, transposon mutagenesis libraries were constructed and screened to isolate the (S)-equol resistant mutant E. coli strain BL21 (ydiS) in order to overcome the inhibitory effects of (S)-equol on bacterial growth. Bacterial full genome scan sequencing and in vitro overexpression results revealed that the ydiS gene was responsible for this resistance. Second, the (S)-equol-producing genes L-dznr, L-ddrc, L-dhdr, and L-thdr of Lactococcus strain 20-92 were synthesized and cloned into compatible vectors, pETDuet-1 and pCDFDuet-1. These plasmids were subsequently transformed into BL21 (DE3) and its mutant BL21 (ydiS). Both engineered BL21 (DE3) and BL21 (ydiS) could use daidzein as substrate to produce (S)-equol under both anaerobic and aerobic conditions. As expected, engineered BL21 (ydiS) had faster growth rates than BL21 (DE3) when supplemented with high concentrations of (S)-equol. The yield and the daidzein utilization ratio were higher for engineered BL21 (ydiS). Interestingly, engineered BL21 (ydiS) was able to convert daidzein to (S)-equol efficiently under aerobic conditions, providing a convenient method for (S)-equol production in vitro. In addition, a two-step method was developed to produce (S)-equol using daidzin as substrate.

9.
Biochem Biophys Res Commun ; 450(4): 1612-8, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-25044112

ABSTRACT

Clostridium acetobutylicum strain Rh8 is a butanol-tolerant mutant which can tolerate up to 19g/L butanol, 46% higher than that of its parent strain DSM 1731. We previously performed comparative cytoplasm- and membrane-proteomic analyses to understand the mechanism underlying the improved butanol tolerance of strain Rh8. In this work, we further extended this comparison to the genomic level. Compared with the genome of the parent strain DSM 1731, two insertion sites, four deletion sites, and 67 single nucleotide variations (SNVs) are distributed throughout the genome of strain Rh8. Among the 67 SNVs, 16 SNVs are located in the predicted promoters and intergenic regions; while 29 SNVs are located in the coding sequence, affecting a total of 21 proteins involved in transport, cell structure, DNA replication, and protein translation. The remaining 22 SNVs are located in the ribosomal genes, affecting a total of 12 rRNA genes in different operons. Analysis of previous comparative proteomic data indicated that none of the differentially expressed proteins have mutations in its corresponding genes. Rchange Algorithms analysis indicated that the mutations occurred in the ribosomal genes might change the ribosome RNA thermodynamic characteristics, thus affect the translation strength of these proteins. Take together, the improved butanol tolerance of C. acetobutylicum strain Rh8 might be acquired through regulating the translational process to achieve different expression strength of genes involved in butanol tolerance.


Subject(s)
Butanols/pharmacology , Clostridium acetobutylicum/metabolism , Proteome , Clostridium acetobutylicum/drug effects , Clostridium acetobutylicum/genetics , Genes, Bacterial , Mutation
10.
Appl Environ Microbiol ; 80(9): 2833-41, 2014 May.
Article in English | MEDLINE | ID: mdl-24584239

ABSTRACT

Oxidoreduction potential (ORP) is an important physiological parameter for biochemical production in anaerobic or microaerobic processes. However, the effect of ORP on cellular physiology remains largely unknown, which hampers the design of engineering strategies targeting proteins associated with ORP response. Here we characterized the effect of altering ORP in a 1,3-propanediol producer, Klebsiella oxytoca, by comparative proteomic profiling combined with flux balance analysis. Decreasing the extracellular ORP from -150 to -240 mV retarded cell growth and enhanced 1,3-propanediol production. Comparative proteomic analysis identified 61 differentially expressed proteins, mainly involved in carbohydrate catabolism, cellular constituent biosynthesis, and reductive stress response. A hypothetical oxidoreductase (HOR) that catalyzes 1,3-propanediol production was markedly upregulated, while proteins involved in biomass precursor synthesis were downregulated. As revealed by subsequent flux balance analysis, low ORP induced a metabolic shift from glycerol oxidation to reduction and rebalancing of redox and energy metabolism. From the integrated protein expression profiles and flux distributions, we can construct a rational analytic framework that elucidates how (facultative) anaerobes respond to extracellular ORP changes.


Subject(s)
Klebsiella oxytoca/chemistry , Klebsiella oxytoca/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Glycerol/metabolism , Klebsiella oxytoca/genetics , Oxidation-Reduction , Propylene Glycols/metabolism , Proteomics
11.
Methods Mol Biol ; 834: 137-51, 2012.
Article in English | MEDLINE | ID: mdl-22144358

ABSTRACT

The production of biofuels from renewable sources by microbial engineering has gained increased attention due to energy and environmental concerns. Butanol is one of the important gasoline-substitute fuels and can be produced by native microorganism Clostridium acetobutylicum. To develop a fundamental tool to understand C. acetobutylicum, a high resolution proteome reference map for this species has been established. To better understand the relationship between butanol tolerance and butanol yield, we performed a comparative proteomic analysis between the wild-type strain DSM 1731 and its mutant Rh8 at acidogenic and solventogenic phases, respectively. The 102 differentially expressed proteins that are mainly involved in protein folding, solvent formation, amino acid metabolism, protein synthesis, nucleotide metabolism, transport, and others were detected. Hierarchical clustering analysis revealed that over 70% of the 102 differentially expressed proteins in mutant Rh8 were either upregulated (e.g., chaperones and solvent formation related) or downregulated (e.g., amino acid metabolism and protein synthesis related) in both acidogenic and solventogenic phase, which, respectively, are only upregulated or downregulated in solventogenic phase in the wild-type strain.


Subject(s)
Biofuels , Metabolic Engineering/methods , Proteomics/methods , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Clostridium acetobutylicum/genetics , Clostridium acetobutylicum/metabolism , Cluster Analysis , Electrophoresis, Gel, Two-Dimensional , Fermentation , Mass Spectrometry , Proteome
12.
J Bacteriol ; 193(18): 5007-8, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21742891

ABSTRACT

Clostridium acetobutylicum is an important microorganism for solvent production. We report the complete genome sequence of C. acetobutylicum DSM 1731, a genome with multireplicon architecture. Comparison with the sequenced type strain C. acetobutylicum ATCC 824, the genome of strain DSM1731 harbors a 1.7-kb insertion and a novel 11.1-kb plasmid, which might have been acquired during evolution.


Subject(s)
Clostridium acetobutylicum/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Sequence Analysis, DNA , Clostridium acetobutylicum/metabolism , Molecular Sequence Data , Mutagenesis, Insertional , Plasmids , Solvents/metabolism
13.
Mol Biosyst ; 7(5): 1660-77, 2011 May.
Article in English | MEDLINE | ID: mdl-21384033

ABSTRACT

The solventogenic bacterium Clostridium acetobutylicum is the most important species of Clostridium used in the fermentation industry. However, the intolerance to butanol hampers the efficient production of solvents. Butanol toxicity has been attributed to the chaotropic effect on the cell membrane, but the knowledge on the effect of butanol on membrane associated proteins is quite limited. Using 2-DE combined with MALDI-TOF MS/MS and 1-DE integrated with LC-MS/MS, 341 proteins in the membrane fractions of cell lysate were identified, thus establishing the first comprehensive membrane proteome of C. acetobutylicum. The identified proteins are mainly involved in transport, cellular membrane/wall machinery, formation of surface coat and flagella, and energy metabolism. Comparative analysis on the membrane proteomes of the wild type strain DSM 1731 and its butanol-tolerant mutant Rh8 revealed 73 differentially expressed proteins. Hierarchical clustering analysis suggested that mutant Rh8 may have evolved a more stabilized membrane structure, and have developed a cost-efficient energy metabolism strategy, to cope with the butanol challenge. This comparative membrane proteomics study, together with our previous published work on comparative cytoplasmic proteomics, allows us to obtain a systemic understanding of the effect of butanol on cellular physiology of C. acetobutylicum.


Subject(s)
Bacterial Proteins/analysis , Clostridium acetobutylicum/metabolism , Membrane Proteins/analysis , Proteome/analysis , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Bacterial Proteins/classification , Butanols/pharmacology , Chromatography, Liquid , Clostridium acetobutylicum/genetics , Cluster Analysis , Electrophoresis, Gel, Two-Dimensional , Electrophoresis, Polyacrylamide Gel , Mass Spectrometry , Membrane Proteins/classification , Mutation , Proteome/classification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
14.
Appl Environ Microbiol ; 77(5): 1674-80, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21216898

ABSTRACT

Solvent production by Clostridium acetobutylicum collapses when cells are grown in pH-uncontrolled glucose medium, the so-called "acid crash" phenomenon. It is generally accepted that the fast accumulation of acetic acid and butyric acid triggers the acid crash. We found that addition of 1 mM formic acid into corn mash medium could trigger acid crash, suggesting that formic acid might be related to acid crash. When it was grown in pH-uncontrolled glucose medium or glucose-rich medium, C. acetobutylicum DSM 1731 containing the empty plasmid pIMP1 failed to produce solvents and was found to accumulate 0.5 to 1.24 mM formic acid intracellularly. In contrast, recombinant strain DSM 1731 with formate dehydrogenase activity did not accumulate formic acid intracellularly and could produce solvent as usual. We therefore conclude that the accumulation of formic acid, rather than acetic acid and butyric acid, is responsible for the acid crash of acetone-butanol-ethanol fermentation.


Subject(s)
Acetone/metabolism , Butanols/metabolism , Clostridium acetobutylicum/growth & development , Clostridium acetobutylicum/metabolism , Ethanol/metabolism , Formates/toxicity , Acetic Acid/toxicity , Butyric Acid/toxicity , Clostridium acetobutylicum/drug effects , Culture Media/chemistry , Fermentation , Glucose/metabolism , Hydrogen-Ion Concentration , Plasmids , Zea mays/metabolism
15.
J Proteome Res ; 9(6): 3046-61, 2010 Jun 04.
Article in English | MEDLINE | ID: mdl-20426490

ABSTRACT

The solventogenic bacterium Clostridium acetobutylicum is an important species of the Clostridium community. To develop a fundamental tool that is useful for biological studies of C. acetobutylicum, we established a high resolution proteome reference map for this species. We identified 1206 spots representing 564 different proteins by mass spectrometry, covering approximately 50% of major metabolic pathways. To better understand the relationship between butanol tolerance and butanol yield, we performed a comparative proteomic analysis between the wild type strain DSM 1731 and the mutant Rh8, which has higher butanol tolerance and higher butanol yield. Comparative proteomic analysis of two strains at acidogenic and solventogenic phases revealed 102 differentially expressed proteins that are mainly involved in protein folding, solvent formation, amino acid metabolism, protein synthesis, nucleotide metabolism, transport, and others. Hierarchical clustering analysis revealed that over 70% of the 102 differentially expressed proteins in mutant Rh8 were either upregulated (e.g., chaperones and solvent formation related) or downregulated (e.g., amino acid metabolism and protein synthesis related) in both acidogenic and solventogenic phase, which, respectively, are only upregulated or downregulated in solventogenic phase in the wild type strain. This suggests that Rh8 cells have evolved a mechanism to prepare themselves for butanol challenge before butanol is produced, leading to an increased butanol yield. This is the first report on the comparative proteome analysis of a mutant strain and a base strain of C. acetobutylicum. The fundamental proteomic data and analyses will be useful for further elucidating the biological mechanism of butanol tolerance and/or enhanced butanol production.


Subject(s)
Bacterial Proteins/chemistry , Butanols/metabolism , Butanols/pharmacology , Clostridium acetobutylicum/chemistry , Proteomics/methods , Bacterial Proteins/classification , Bacterial Proteins/genetics , Clostridium acetobutylicum/genetics , Clostridium acetobutylicum/metabolism , Cluster Analysis , Cytoplasm , Drug Resistance , Electrophoresis, Gel, Two-Dimensional , Fermentation , Gene Expression Regulation, Bacterial , Mass Spectrometry , Metabolic Networks and Pathways , Mutation , Proteome/chemistry , Proteome/genetics , Reverse Transcriptase Polymerase Chain Reaction , Stress, Physiological
16.
Appl Environ Microbiol ; 76(10): 3177-86, 2010 May.
Article in English | MEDLINE | ID: mdl-20348298

ABSTRACT

Previously, we have shown that glutathione can protect Lactococcus lactis against oxidative stress and acid stress. In this study, we show that glutathione taken up by L. lactis SK11 can protect this organism against osmotic stress. When exposed to 5 M NaCl, L. lactis SK11 cells containing glutathione exhibited significantly improved survival compared to the control cells. Transmission electron microscopy showed that the integrity of L. lactis SK11 cells containing glutathione was maintained for at least 24 h, whereas autolysis of the control cells occurred within 2 h after exposure to this osmotic stress. Comparative proteomic analyses using SK11 cells containing or not containing glutathione that were exposed or not exposed to osmotic stress were performed. The results revealed that 21 of 29 differentially expressed proteins are involved in metabolic pathways, mainly sugar metabolism. Several glycolytic enzymes of L. lactis were significantly upregulated in the presence of glutathione, which might be the key for improving the general stress resistance of a strain. Together with the results of previous studies, the results of this study demonstrated that glutathione plays important roles in protecting L. lactis against multiple environmental stresses; thus, glutathione can be considered a general protectant for improving the robustness and stability of dairy starter cultures.


Subject(s)
Glutathione/pharmacology , Lactococcus lactis/drug effects , Oxidative Stress/drug effects , Proteomics , Gene Expression Regulation, Bacterial/drug effects , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Lactococcus lactis/ultrastructure , Microscopy, Electron, Transmission , Sodium Chloride/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...