Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Lancet Neurol ; 23(8): 826-835, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945144

ABSTRACT

The number of long duration human spaceflights has increased substantially over the past 15 years, leading to the discovery of numerous effects on the CNS. Microgravity results in headward fluid shifts, ventricular expansion, an upward shift of the brain within the skull, and remodelling of grey and white matter. The fluid changes are correlated with changes to perivascular space and spaceflight associated neuro-ocular syndrome. Microgravity alters the vestibular processing of head tilt and results in reduced tactile and proprioceptive inputs during spaceflight. Sensory adaptation is reflected in postflight effects, evident as transient sensorimotor impairment. Another major concern is that galactic cosmic radiation, which spacefarers will be exposed to when going beyond the magnetosphere around Earth, might have a negative effect on CNS function. Research with rodents points to the potential disruptive effects of space radiation on blood-brain barrier integrity and brain structures. More work is needed to understand and mitigate these effects on the CNS before humans travel to Mars, as the flight durations will be longer than anyone has previously experienced.


Subject(s)
Brain , Space Flight , Weightlessness , Humans , Brain/physiology , Weightlessness/adverse effects , Animals , Cosmic Radiation/adverse effects
2.
Life (Basel) ; 13(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37763256

ABSTRACT

Biomarkers, ranging from molecules to behavior, can be used to identify thresholds beyond which performance of mission tasks may be compromised and could potentially trigger the activation of countermeasures. Identification of homologous brain regions and/or neural circuits related to operational performance may allow for translational studies between species. Three discussion groups were directed to use operationally relevant performance tasks as a driver when identifying biomarkers and brain regions or circuits for selected constructs. Here we summarize small-group discussions in tables of circuits and biomarkers categorized by (a) sensorimotor, (b) behavioral medicine and (c) integrated approaches (e.g., physiological responses). In total, hundreds of biomarkers have been identified and are summarized herein by the respective group leads. We hope the meeting proceedings become a rich resource for NASA's Human Research Program (HRP) and the community of researchers.

3.
Life Sci Space Res (Amst) ; 37: 78-87, 2023 May.
Article in English | MEDLINE | ID: mdl-37087182

ABSTRACT

PURPOSE: Astronauts on missions beyond low Earth orbit will be exposed to galactic cosmic radiation, and there is concern about potential adverse cardiovascular effects. Most of the research to identify cardiovascular risk of space radiation has been performed in rodent models. To aid in the translation of research results to humans, the current study identified long-term effects of high-energy charged particle irradiation on cardiovascular function and structure in a larger non-rodent animal model. MATERIALS AND METHODS: At the age of 12 months, male New Zealand white rabbits were exposed to whole-body protons (250 MeV) or oxygen ions (16O, 600 MeV/n) at a dose of 0 or 0.5 Gy and were followed for 12 months after irradiation. Ultrasonography was used to measure in vivo cardiac function and blood flow parameters at 10- and 12-months post-irradiation. At 12 months after irradiation, blood cell counts and blood chemistry values were assessed, and cardiac tissue and aorta were collected for histological as well as molecular and biochemical analyses. Plasma was used for metabolomic analysis and to quantify common markers of cardiac injury. RESULTS: A small but significant decrease in the percentage of circulating lymphocytes and an increase in neutrophil percentage was seen 12 months after 0.5 Gy protons, while 16O exposure resulted in an increase in monocyte percentage. Markers of cardiac injury, cardiac troponin I (cTnI) and N-Terminal pro-B-type Natriuretic Peptide were modestly increased in the proton group, and cTnI was also increased after 16O. On the other hand, metabolomics on plasma at 12 months revealed no changes. Both types of irradiation demonstrated alterations in cardiac mitochondrial morphology and an increase in left ventricular protein levels of inflammatory cell marker CD68. However, changes in cardiac function were only mild. CONCLUSION: Low dose charged particle irradiation caused mild long-term changes in inflammatory markers, cardiac function, and structure in the rabbit heart, in line with previous studies in mouse and rat models.


Subject(s)
Cosmic Radiation , Protons , Humans , Rabbits , Male , Rats , Mice , Animals , Infant , Oxygen , Ions , Heart/radiation effects , Dose-Response Relationship, Radiation
4.
NPJ Microgravity ; 8(1): 35, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35948598

ABSTRACT

It has been proposed that neuroinflammatory response plays an important role in the neurovascular remodeling in the brain after stress. The goal of the present study was to characterize changes in the gene expression profiles associated with neuroinflammation, neuronal function, metabolism and stress in mouse brain tissue. Ten-week old male C57BL/6 mice were launched to the International Space Station (ISS) on SpaceX-12 for a 35-day mission. Within 38 ± 4 h of splashdown, mice were returned to Earth alive. Brain tissues were collected for analysis. A novel digital color-coded barcode counting technology (NanoStringTM) was used to evaluate gene expression profiles in the spaceflight mouse brain. A set of 54 differently expressed genes (p < 0.05) significantly segregates the habitat ground control (GC) group from flight (FLT) group. Many pathways associated with cellular stress, inflammation, apoptosis, and metabolism were significantly altered by flight conditions. A decrease in the expression of genes important for oligodendrocyte differentiation and myelin sheath maintenance was observed. Moreover, mRNA expression of many genes related to anti-viral signaling, reactive oxygen species (ROS) generation, and bacterial immune response were significantly downregulated. Here we report that significantly altered immune reactions may be closely associated with spaceflight-induced stress responses and have an impact on the neuronal function.

5.
Zhongguo Zhong Yao Za Zhi ; 47(11): 3095-3104, 2022 Jun.
Article in Chinese | MEDLINE | ID: mdl-35718534

ABSTRACT

This study aims to summarize the research hotspots of Hedysari Radix and predict the research trend with bibliometric methods, which is expected to serve as a reference for future research. CiteSpace V 5.8.R2 was employed for visualization of the number, authors, author affiliations, journals, funds, and keywords of the Chinese and English articles on Hedysari Radix in China National Knowledge Infrastructure(CNKI) and Web of Science(WOS) from 2001 to 2021. A total of 693 Chinese articles and 167 English articles were finally included. According to the knowledge map, most of the articles were from China and the authors from China had a close cooperation with the related institutions in the United States and Australia. Gansu University of Chinese Medicine(288) and Lanzhou University(151) respectively came out on top of the author affiliations in the number of Chinese and English articles. The journals were mainly about Chinese medicine, mainly including Chinese Journal of Information on Traditional Chinese Medicine and Evidence-based Complementary and Alternative Medicine. Papers(191 in Chinese and 60 in English) funded by National Natural Science Foundation of China were the most. Keyword analysis suggested that the main research directions were pharmacological action and mechanism, component analysis, content determination, and industrialization of medicinal materials of Hedysari Radix and that the research hotspots were the prevention and treatment of diabetes and its complications, tumors, myocardial injury, liver fibrosis and other diseases with active components such as polysaccharides, ultrafiltrate, formononetin, and calycosin. The targets, signaling pathways, and genes related to the anti-tumor, heart protection, prevention and treatment of diabetes and its complications, and regulation of immunity should be further studied.


Subject(s)
Bibliometrics , Medicine, Chinese Traditional , China , Humans , Plant Roots , United States
6.
Life (Basel) ; 11(8)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34440593

ABSTRACT

There are serious concerns about possible late radiation damage to ocular tissue from prolonged space radiation exposure, and occupational and medical procedures. This study aimed to investigate the effects of whole-body high-energy proton exposure at a single dose on apoptosis, oxidative stress, and blood-retina barrier (BRB) integrity in the retina and optic nerve head (ONH) region and to compare these radiation-induced effects with those produced by fractionated dose. Six-month-old C57BL/6 male mice were either sham irradiated or received whole-body high energy proton irradiation at an acute single dose of 0.5 Gy or 12 equal dose fractions for a total dose of 0.5 Gy over twenty-five days. At four months following irradiation, mice were euthanized and ocular tissues were collected for histochemical analysis. Significant increases in the number of apoptotic cells were documented in the mouse retinas and ONHs that received proton radiation with a single or fractionated dose (p < 0.05). Immunochemical analysis revealed enhanced immunoreactivity for oxidative biomarker, 4-hydroxynonenal (4-HNE) in the retina and ONH following single or fractionated protons with more pronounced changes observed with a single dose of 0.5 Gy. BRB integrity was also evaluated with biomarkers of aquaporin-4 (AQP-4), a water channel protein, a tight junction (TJ) protein, Zonula occludens-1 (ZO-1), and an adhesion molecule, the platelet endothelial cell adhesion molecule-1 (PECAM-1). A significantly increased expression of AQP-4 was observed in the retina following a single dose exposure compared to controls. There was also a significant increase in the expression of PECAM-1 and a decrease in the expression of ZO-1 in the retina. These changes give a strong indication of disturbance to BRB integrity in the retina. Interestingly, there was very limited immunoreactivity of AQP-4 and ZO-1 seen in the ONH region, pointing to possible lack of BRB properties as previously reported. Our data demonstrated that exposure to proton radiation of 0.5 Gy induced oxidative stress-associated apoptosis in the retina and ONH, and changes in BRB integrity in the retina. Our study also revealed the differences in BRB biomarker distribution between these two regions. In response to radiation insults, the cellular response in the retina and ONH may be differentially regulated in acute or hyperfractionated dose schedules.

7.
Sci Rep ; 11(1): 11452, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34075076

ABSTRACT

Using a ground-based model to simulate spaceflight [21-days of single-housed, hindlimb unloading (HLU) combined with continuous low-dose gamma irradiation (LDR, total dose of 0.04 Gy)], an in-depth survey of the immune and hematological systems of mice at 7-days post-exposure was performed. Collected blood was profiled with a hematology analyzer and spleens were analyzed by whole transcriptome shotgun sequencing (RNA-sequencing). The results revealed negligible differences in immune differentials. However, hematological system analyses of whole blood indicated large disparities in red blood cell differentials and morphology, suggestive of anemia. Murine Reactome networks indicated majority of spleen cells displayed differentially expressed genes (DEG) involved in signal transduction, metabolism, cell cycle, chromatin organization, and DNA repair. Although immune differentials were not changed, DEG analysis of the spleen revealed expression profiles associated with inflammation and dysregulated immune function persist to 1-week post-simulated spaceflight. Additionally, specific regulation pathways associated with human blood disease gene orthologs, such as blood pressure regulation, transforming growth factor-ß receptor signaling, and B cell differentiation were noted. Collectively, this study revealed differential immune and hematological outcomes 1-week post-simulated spaceflight conditions, suggesting recovery from spaceflight is an unremitting process.


Subject(s)
Gamma Rays/adverse effects , Hematopoiesis/immunology , Hematopoiesis/radiation effects , Hindlimb Suspension , Signal Transduction/radiation effects , Animals , Dose-Response Relationship, Radiation , Female , Mice
8.
Article in English | MEDLINE | ID: mdl-33902391

ABSTRACT

Both microgravity and radiation exposure in the spaceflight environment have been identified as hazards to astronaut health and performance. Substantial study has been focused on understanding the biology and risks associated with prolonged exposure to microgravity, and the hazards presented by radiation from galactic cosmic rays (GCR) and solar particle events (SPEs) outside of low earth orbit (LEO). To date, the majority of the ground-based analogues (e.g., rodent or cell culture studies) that investigate the biology of and risks associated with spaceflight hazards will focus on an individual hazard in isolation. However, astronauts will face these challenges simultaneously Combined hazard studies are necessary for understanding the risks astronauts face as they travel outside of LEO, and are also critical for countermeasure development. The focus of this review is to describe biologic and functional outcomes from ground-based analogue models for microgravity and radiation, specifically highlighting the combined effects of radiation and reduced weight-bearing from rodent ground-based tail suspension via hind limb unloading (HLU) and partial weight-bearing (PWB) models, although in vitro and spaceflight results are discussed as appropriate. The review focuses on the skeletal, ocular, central nervous system (CNS), cardiovascular, and stem cells responses.


Subject(s)
Astronauts , Cosmic Radiation , Radiation Exposure , Space Flight , Weightlessness , Hindlimb Suspension , Humans , Solar Activity , Weight-Bearing
9.
J Vis Exp ; (164)2020 10 27.
Article in English | MEDLINE | ID: mdl-33191924

ABSTRACT

Reports show that prolonged exposure to a spaceflight environment produces morphologic and functional ophthalmic changes in astronauts during and after an International Space Station (ISS) mission. However, the underlying mechanisms of these spaceflight-induced changes are currently unknown. The purpose of the present study was to determine the impact of the spaceflight environment on ocular structures by evaluating the thickness of the mouse retina, the retinal pigment epithelium (RPE), the choroid and the sclera layer using micro-CT imaging. Ten-week-old C57BL/6 male mice were housed aboard the ISS for a 35-day mission and then returned to Earth alive for tissue analysis. For comparison, ground control (GC) mice on Earth were maintained in identical environmental conditions and hardware. Ocular tissue samples were collected for micro-CT analysis within 38(±4) hours after splashdown. The images of the cross-section of the retina, the RPE, the choroid, and the sclera layer of the fixed eye was recorded in an axial and sagittal view using a micro-CT imaging acquisition method. The micro-CT analysis showed that the cross-section areas of the retina, RPE, and choroid layer thickness were changed in spaceflight samples compared to GC, with spaceflight samples showing significantly thinner cross-sections and layers compared to controls. The findings from this study indicate that micro-CT evaluation is a sensitive and reliable method to characterize ocular structure changes. These results are expected to improve the understanding of the impact of environmental stress on global ocular structures.


Subject(s)
Eye/diagnostic imaging , Space Flight , X-Ray Microtomography , Animals , Choroid/diagnostic imaging , Dissection , Humans , Male , Mice, Inbred C57BL , Organ Preservation , Retinal Pigment Epithelium/diagnostic imaging
10.
Life Sci Space Res (Amst) ; 26: 62-68, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32718688

ABSTRACT

PURPOSE: Studies are required to determine whether exposures to radiation encountered during manned missions in deep space may have adverse effects on the cardiovascular system. Most of the prior studies on effects of simulated space radiation on the heart and vasculature have been performed in mouse models. To provide data from a second animal species, two studies were performed to assess effects of high-energy charged particle radiation on the heart and abdominal aorta in a rat model. MATERIALS AND METHODS: In study A, male Long Evans rats were exposed to whole-body protons (250 MeV, 0.5 Gy) or oxygen ions (16O, 600 MeV/n, 0.5 Gy), and ultrasonography was used to measure in vivo cardiac function and blood flow parameters at 3, 5, 9 and 12 months after radiation, followed by tissue collection at 12 months. In study B, male Long Evans rats were exposed to 16O (1 GeV/n, 0.01-0.25 Gy), and hearts collected at 6 to 7 and 12 months for histology and western-blots. RESULTS: Both protons (250 MeV) and 16O (600 MeV/n) caused a decrease in left ventricular posterior wall thickness at 3-5 months, but did not change echocardiographic measures of cardiac function. In Pulsed-wave Doppler assessment of the abdominal aorta, an increase was seen in mean velocity, peak velocity, and velocity time integral at 12 months after 16O (600 MeV/n), suggesting a change in vascular function. There were no significant changes in histopathology or histological quantification of total collagens in heart or aorta. On the other hand, an increase was seen in a 75 kDa peptide of collagen type III in the left ventricle of rats exposed to protons (250 MeV) and 16O (600 MeV/n and 1 GeV/n), suggesting that radiation caused remodeling of existing collagens in the heart. 16O (600 MeV/n and 1 GeV/n) caused increases in left ventricular protein levels of immune cell markers CD2, CD4, CD8, and CD68. CONCLUSION: A single low dose of whole body protons or 16O in male Long Evans rats did not change cardiac function or induce gross pathological changes in the heart or aorta, but induced mild changes in vascular function and remodeling of existing collagens in the heart. Altogether, studies in prior mouse models and the current work in rats indicate minor changes in cardiac function and structure after a low dose of single-ion radiation.


Subject(s)
Aorta, Abdominal/radiation effects , Heart/radiation effects , Oxygen/adverse effects , Protons/adverse effects , Animals , Aorta, Abdominal/anatomy & histology , Aorta, Abdominal/physiology , Heart/anatomy & histology , Heart/physiology , Ions/adverse effects , Male , Radiation, Ionizing , Rats , Rats, Long-Evans
11.
Sci Rep ; 9(1): 13304, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31527661

ABSTRACT

Extended spaceflight has been shown to adversely affect astronaut visual acuity. The purpose of this study was to determine whether spaceflight alters gene expression profiles and induces oxidative damage in the retina. Ten week old adult C57BL/6 male mice were flown aboard the ISS for 35 days and returned to Earth alive. Ground control mice were maintained on Earth under identical environmental conditions. Within 38 (+/-4) hours after splashdown, mice ocular tissues were collected for analysis. RNA sequencing detected 600 differentially expressed genes (DEGs) in murine spaceflight retinas, which were enriched for genes related to visual perception, the phototransduction pathway, and numerous retina and photoreceptor phenotype categories. Twelve DEGs were associated with retinitis pigmentosa, characterized by dystrophy of the photoreceptor layer rods and cones. Differentially expressed transcription factors indicated changes in chromatin structure, offering clues to the observed phenotypic changes. Immunofluorescence assays showed degradation of cone photoreceptors and increased retinal oxidative stress. Total retinal, retinal pigment epithelium, and choroid layer thickness were significantly lower after spaceflight. These results indicate that retinal performance may decrease over extended periods of spaceflight and cause visual impairment.


Subject(s)
Gene Expression Regulation/physiology , Retina/physiology , Weightlessness/adverse effects , Animals , Ecological Systems, Closed , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/genetics , Retina/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Space Flight/methods , Transcriptome/genetics , Vision, Ocular/genetics , Visual Acuity/physiology
12.
Int J Mol Sci ; 20(17)2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31443374

ABSTRACT

Spaceflight poses many challenges for humans. Ground-based analogs typically focus on single parameters of spaceflight and their associated acute effects. This study assesses the long-term transcriptional effects following single and combination spaceflight analog conditions using the mouse model: simulated microgravity via hindlimb unloading (HLU) and/or low-dose γ-ray irradiation (LDR) for 21 days, followed by 4 months of readaptation. Changes in gene expression and epigenetic modifications in brain samples during readaptation were analyzed by whole transcriptome shotgun sequencing (RNA-seq) and reduced representation bisulfite sequencing (RRBS). The results showed minimal gene expression and cytosine methylation alterations at 4 months readaptation within single treatment conditions of HLU or LDR. In contrast, following combined HLU+LDR, gene expression and promoter methylation analyses showed multiple altered pathways involved in neurogenesis and neuroplasticity, the regulation of neuropeptides, and cellular signaling. In brief, neurological readaptation following combined chronic LDR and HLU is a dynamic process that involves pathways that regulate neuronal function and structure and may lead to late onset neurological sequelae.


Subject(s)
Disease Susceptibility , Nervous System Diseases/etiology , Radiation Dosage , Radiation, Ionizing , Weightlessness , Animals , Biomarkers , Body Weight , Brain/metabolism , Brain/physiopathology , DNA Methylation , Disease Models, Animal , Environmental Exposure/adverse effects , Female , Gamma Rays , Gene Expression Profiling , Mice , Nervous System Diseases/metabolism , Promoter Regions, Genetic , Signal Transduction , Transcriptome , Weightlessness Simulation
13.
Biomed Opt Express ; 10(7): 3217-3231, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31467775

ABSTRACT

Safe use of retinal imaging with two-photon excitation in human eyes is crucial, as the effects of ultrashort pulsed lasers on the retina are relatively unknown. At the time of the study, the laser safety standards were inadequate due to the lack of biological data. This article addresses the feasibility of two-photon retinal imaging with respect to laser safety. In this study, rat retinas were evaluated at various laser exposure levels and with different laser parameters to determine the effects of laser-induced optical damage. The results were experimentally verified using confocal reflectance imaging, two-photon fluorescein angiography, immunohistochemistry, and correlated to the IEC 60825-1 laser safety standard.

14.
Life Sci Space Res (Amst) ; 20: 72-84, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30797436

ABSTRACT

PURPOSE: Astronauts traveling beyond low-Earth orbit will be exposed to high linear-energy transfer charged particles. Because there is concern about the adverse effects of space radiation on the cardiovascular system, this study assessed cardiac function and structure and immune cell infiltration in a mouse model of charged-particle irradiation. MATERIALS AND METHODS: Male C57BL/6 J mice were exposed to oxygen ions (16O, 600 MeV/n at 0.25-0.26 Gy/min to a total dose of 0, 0.05, 0.1, 0.25, or 1 Gy), protons (150 MeV, 0.35-0.55 Gy/min to 0, 0.5, or 1 Gy), or protons (150 MeV, 0.5 Gy) followed by 16O (600 MeV/n, 0.1 Gy). Separate groups of mice received 137Cs γ-rays (1 Gy/min to 0, 0.5, 1, or 3 Gy) as a reference. Cardiac function and blood velocity were measured with ultrasonography at 3, 5, 7, and 9 months after irradiation. At 2 weeks, 3 months, and 9 months, cardiac tissue was collected to assess apoptosis, tissue remodeling, and markers of immune cells. RESULTS: Ejection fraction and fractional shortening decreased at 3 and 7 months after 16O. These parameters did not change in mice exposed to γ-rays, protons, or protons followed by 16O. Each of the radiation exposures caused only small increases in cleaved caspase-3 and numbers of apoptotic nuclei. Changes in the levels of α-smooth muscle cell actin and a 75-kDa peptide of collagen type III in the left ventricle suggested tissue remodeling, but there was no significant change in total collagen deposition at 2 weeks, 3 months, and 9 months. Increases in protein amounts of cluster of differentiation (CD)2, CD68, and CD45 as measured with immunoblots at 2 weeks, 3 months, and 9 months after exposure to protons or 16O alone suggested immune cell infiltration. For type III collagen, CD2 and CD68, the efficacy in inducing protein abundance of CD2, CD68, and CD45 was 16O > protons > γ-rays > protons followed by 16O. CONCLUSIONS: Low-dose, high-energy charged-particle irradiation caused mild changes in cardiac function and tissue remodeling in the mouse.


Subject(s)
Biomarkers/analysis , Heart/physiopathology , Oxygen Radioisotopes/administration & dosage , Protons , Radiation Exposure/analysis , Animals , Apoptosis , Heart/radiation effects , Male , Mice , Mice, Inbred C57BL , Radiation Dosage , Space Flight
15.
Int J Mol Sci ; 20(1)2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30577490

ABSTRACT

There is evidence that spaceflight poses acute and late risks to the central nervous system. To explore possible mechanisms, the proteomic changes following spaceflight in mouse brain were characterized. Space Shuttle Atlantis (STS-135) was launched from the Kennedy Space Center (KSC) on a 13-day mission. Within 3⁻5 h after landing, brain tissue was collected to evaluate protein expression profiles using quantitative proteomic analysis. Our results showed that there were 26 proteins that were significantly altered after spaceflight in the gray and/or white matter. While there was no overlap between the white and gray matter in terms of individual proteins, there was overlap in terms of function, synaptic plasticity, vesical activity, protein/organelle transport, and metabolism. Our data demonstrate that exposure to the spaceflight environment induces significant changes in protein expression related to neuronal structure and metabolic function. This might lead to a significant impact on brain structural and functional integrity that could affect the outcome of space missions.


Subject(s)
Brain/metabolism , Proteomics , Space Flight , Weightlessness , Animals , Female , Glycolysis , Gray Matter/metabolism , Intracellular Space/metabolism , Metabolome , Mice , Mitochondria/metabolism , Oxidative Stress , Proteomics/methods , Signal Transduction , White Matter/metabolism
16.
Oncotarget ; 9(18): 14692-14722, 2018 Mar 06.
Article in English | MEDLINE | ID: mdl-29581875

ABSTRACT

While many efforts have been made to pave the way toward human space colonization, little consideration has been given to the methods of protecting spacefarers against harsh cosmic and local radioactive environments and the high costs associated with protection from the deleterious physiological effects of exposure to high-Linear energy transfer (high-LET) radiation. Herein, we lay the foundations of a roadmap toward enhancing human radioresistance for the purposes of deep space colonization and exploration. We outline future research directions toward the goal of enhancing human radioresistance, including upregulation of endogenous repair and radioprotective mechanisms, possible leeways into gene therapy in order to enhance radioresistance via the translation of exogenous and engineered DNA repair and radioprotective mechanisms, the substitution of organic molecules with fortified isoforms, and methods of slowing metabolic activity while preserving cognitive function. We conclude by presenting the known associations between radioresistance and longevity, and articulating the position that enhancing human radioresistance is likely to extend the healthspan of human spacefarers as well.

17.
Exp Eye Res ; 166: 40-48, 2018 01.
Article in English | MEDLINE | ID: mdl-28483661

ABSTRACT

The purpose of this study was to evaluate the retina using near-infrared (NIR) two-photon scanning laser ophthalmoscopy. New Zealand white rabbits, albino rats, and brown Norway rats were used in this study. An autofluorescence image of the retina, including the retinal cells and its associated vasculatures was obtained by a real-time scan using the ophthalmoscope. Furthermore, the retinal vessels, nerve fiber layers and the non-pigmented retina were recorded with two-photon fluorescein angiography (FA); and the choroidal vasculatures were recorded using two-photon indocyanine green angiography (ICGA). Two-photon ICGA was achieved by exciting a second singlet state at ∼398 nm. Simultaneous two-photon FA and two-photon ICGA were performed to characterize the retinal and choroidal vessels with a single injection. The minimum laser power threshold required to elicit two-photon fluorescence was determined. The two-photon ophthalmoscope could serve as a promising tool to detect and monitor the disease progression in animal models. Moreover, these high-resolution images of retinal and choroidal vessels can be acquired in a real-time scan with a single light source, requiring no additional filters for FA or ICGA. The combination of FA and ICGA using the two-photon ophthalmoscope will help researchers to characterize the retinal diseases in animal models, and also to classify the types (classic, occult or mixed) of choroidal neovascularization (CNV) in macular degeneration. Furthermore, the prototype can be adapted to image the retina of rodents and rabbits.


Subject(s)
Fluorescein Angiography/methods , Ophthalmoscopy/methods , Retina/diagnostic imaging , Retinal Diseases/diagnostic imaging , Animals , Coloring Agents , Indocyanine Green , Rabbits , Rats
18.
PLoS One ; 12(12): e0189466, 2017.
Article in English | MEDLINE | ID: mdl-29232383

ABSTRACT

During deep space missions, astronauts will be exposed to low doses of charged particle irradiation. The long-term health effects of these exposures are largely unknown. We previously showed that low doses of oxygen ion (16O) irradiation induced acute damage to the hematopoietic system, including hematopoietic progenitor and stem cells in a mouse model. However, the chronic effects of low dose 16O irradiation remain undefined. In the current study, we investigated the long-term effects of low dose 16O irradiation on the mouse hematopoietic system. Male C57BL/6J mice were exposed to 0.05 Gy, 0.1 Gy, 0.25 Gy and 1.0 Gy whole body 16O (600 MeV/n) irradiation. The effects of 16O irradiation on bone marrow (BM) hematopoietic progenitor cells (HPCs) and hematopoietic stem cells (HSCs) were examined three months after the exposure. The results showed that the frequencies and numbers of BM HPCs and HSCs were significantly reduced in 0.1 Gy, 0.25 Gy and 1.0 Gy irradiated mice compared to 0.05 Gy irradiated and non-irradiated mice. Exposure of mice to low dose 16O irradiation also significantly reduced the clongenic function of BM HPCs determined by the colony-forming unit assay. The functional defect of irradiated HSCs was detected by cobblestone area-forming cell assay after exposure of mice to 0.1 Gy, 0.25 Gy and 1.0 Gy of 16O irradiation, while it was not seen at three months after 0.5 Gy and 1.0 Gy of γ-ray irradiation. These adverse effects of 16O irradiation on HSCs coincided with an increased intracellular production of reactive oxygen species (ROS). However, there were comparable levels of cellular apoptosis and DNA damage between irradiated and non-irradiated HPCs and HSCs. These data suggest that exposure to low doses of 16O irradiation induces long-term hematopoietic injury, primarily via increased ROS production in HSCs.


Subject(s)
Hematopoietic Stem Cells/radiation effects , Oxygen/administration & dosage , Stem Cells/radiation effects , Animals , Flow Cytometry , Male , Mice , Mice, Inbred C57BL , Oxidative Stress
19.
Radiat Res ; 188(4): 392-399, 2017 10.
Article in English | MEDLINE | ID: mdl-28763287

ABSTRACT

The purpose of this study was to determine whether nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived stress can account for unloading- and radiation-induced endothelial damage and neurovascular remodeling in a mouse model. Wild-type (WT, Nox2+/+) C57BL/6 mice or Nox2-/- (B6.129S6-CYBBM) knockout (KO) mice were placed into one of the following groups: age-matched control; hindlimb unloading (HLU); low-dose/low-dose-rate radiation (LDR); or HLU with LDR simultaneously for 21 days. The mice were then sacrificed one month later. Anti-orthostatic tail suspension was used to model the unloading, fluid shift and physiological stress aspects of microgravity. The LDR was delivered using 57Co plates (0.04 Gy at 0.01 cGy/h) to the simulate whole-body irradiation, similar to that experienced while in space. Brains were isolated for characterization of various oxidative stress markers and vascular topology. The level of 4-hydroxynonenal (4-HNE) protein, a specific marker for lipid peroxidation, was measured. Expression of aquaporin-4 (AQP4), a water channel protein expressed in astrocyte end-feet, was quantified. Thirty days after simulated spaceflight, KO mice showed decreased apoptosis (P < 0.05) in the brain compared to WT counterparts. The HLU-dependent increase in apoptosis in WT mice was not observed in KO mice. The level of 4-HNE protein was significantly elevated in the hippocampus of the LDR with HLU treatment group compared to WT controls (P < 0.05). However, there were no significant differences among groups of Nox2-KO mice at the one-month time point. In contrast to findings in the WT animals, superoxide dismutase (SOD) level and expression of AQP4 were similar among all KO groups. In summary, for most of the parameters, the oxidative response to HLU and LDR was suppressed in Nox2-KO mice. This suggests that Nox2-containing NADPH oxidase may contribute to spaceflight environment-induced oxidative stress.


Subject(s)
Hindlimb , NADPH Oxidases/metabolism , Oxidative Stress/radiation effects , Weightlessness Simulation , Animals , Apoptosis/radiation effects , Aquaporin 4/metabolism , Dose-Response Relationship, Radiation , Enzyme Activation/radiation effects , Female , Matrix Metalloproteinase 9/metabolism , Mice , Superoxide Dismutase/metabolism
20.
Int J Radiat Biol ; 93(12): 1312-1320, 2017 12.
Article in English | MEDLINE | ID: mdl-28782442

ABSTRACT

PURPOSE: Exposure to proton irradiation during missions in deep space can lead to bone marrow injury. The acute effects of proton irradiation on hematopoietic stem and progenitor cells remain undefined and thus were investigated. MATERIALS AND METHODS: We exposed male C57BL/6 mice to 0.5 and 1.0 Gy proton total body irradiation (proton-TBI, 150 MeV) and examined changes in peripheral blood cells and bone marrow (BM) progenitors and LSK cells 2 weeks after exposure. RESULTS: 1.0 Gy proton-TBI significantly reduced the numbers of peripheral blood cells compared to 0.5 Gy proton-TBI and unirradiated animals, while the numbers of peripheral blood cell counts were comparable between 0.5 Gy proton-TBI and unirradiated mice. The frequencies and numbers of LSK cells and CMPs in BM of 0.5 and 1.0 Gy irradiated mice were decreased in comparison to those of normal controls. LSK cells and CMPs and their progeny exhibited a radiation-induced impairment in clonogenic function. Exposure to 1.0 Gy increased cellular apoptosis but not the production of reactive oxygen species (ROS) in CMPs two weeks after irradiation. LSK cells from irradiated mice exhibited an increase in ROS production and apoptosis. CONCLUSION: Exposure to proton-TBI can induce acute damage to BM progenitors and LSK cells.


Subject(s)
Bone Marrow Cells/cytology , Hematopoietic Stem Cells/radiation effects , Protons/adverse effects , Whole-Body Irradiation/adverse effects , Animals , Apoptosis/radiation effects , Blood Cell Count , Dose-Response Relationship, Radiation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...