Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Brain Res Bull ; 210: 110928, 2024 May.
Article in English | MEDLINE | ID: mdl-38493836

ABSTRACT

Epilepsy-associated cognitive disorder (ECD), a prevalent comorbidity in epilepsy patients, has so far uncharacterized etiological origins. Our prior work revealed that lysyl oxidase (Lox) acted as a novel contributor of ferroptosis, a recently discovered cell death mode in the regulation of brain function. However, the role of Lox-mediated ferroptosis in ECD remains unknown. ECD mouse model was established 2 months later following a single injection of kainic acid (KA) for. After chronic treatment with KA, mice were treated with different doses (30 mg/kg, 100 mg/kg and 300 mg/kg) of Lox inhibitor BAPN. Additionally, hippocampal-specific Lox knockout mice was also constructed and employed to validate the role of Lox in ECD. Cognitive functions were assessed using novel object recognition test (NOR) and Morris water maze test (MWM). Protein expression of phosphorylated cAMP-response element binding (CREB), a well-known molecular marker for evaluation of cognitive performance, was also detected by Western blot. The protein distribution of Lox was analyzed by immunofluorescence. In KA-induced ECD mouse model, ferroptosis process was activated according to upregulation of 4-HNE protein and a previously discovered ferroptosis in our group, namely, Lox was remarkably increased. Pharmacological inhibition of Lox by BAPN at the dose of 100 mg/kg significantly increased the discrimination index following NOR test and decreased escape latency as well as augmented passing times within 60 s following MWM test in ECD mouse model. Additionally, deficiency of Lox in hippocampus also led to pronounced improvement of deficits in ECD model. These findings indicate that the ferroptosis regulatory factor, Lox, is activated in ECD. Ablation of Lox by either pharmacological intervention or genetic manipulation ameliorates the impairment in ECD mouse model, which suggest that Lox serves as a promising therapeutic target for treating ECD in clinic.


Subject(s)
Cognitive Dysfunction , Epilepsy , Humans , Mice , Animals , Protein-Lysine 6-Oxidase/genetics , Protein-Lysine 6-Oxidase/metabolism , Aminopropionitrile/pharmacology , Gene Expression Regulation , Disease Models, Animal , Cognitive Dysfunction/drug therapy
2.
Nat Commun ; 14(1): 7421, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37973916

ABSTRACT

The gut microbiota may have an effect on the therapeutic resistance and toxicity of immune checkpoint inhibitors (ICIs). However, the associations between the highly variable genomes of gut bacteria and the effectiveness of ICIs remain unclear, despite the fact that merely a few gene mutations between similar bacterial strains may cause significant phenotypic variations. Here, using datasets from the gut microbiome of 996 patients from seven clinical trials, we systematically identify microbial genomic structural variants (SVs) using SGV-Finder. The associations between SVs and response, progression-free survival, overall survival, and immune-related adverse events are systematically explored by metagenome-wide association analysis and replicated in different cohorts. Associated SVs are located in multiple species, including Akkermansia muciniphila, Dorea formicigenerans, and Bacteroides caccae. We find genes that encode enzymes that participate in glucose metabolism be harbored in these associated regions. This work uncovers a nascent layer of gut microbiome heterogeneity that is correlated with hosts' prognosis following ICI treatment and represents an advance in our knowledge of the intricate relationships between microbiota and tumor immunotherapy.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Neoplasms , Humans , Gastrointestinal Microbiome/genetics , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Microbiota/genetics , Metagenome , Bacteria/genetics , Neoplasms/genetics
3.
Genes Dis ; 10(3): 771-785, 2023 May.
Article in English | MEDLINE | ID: mdl-37396555

ABSTRACT

Vascular remodeling and angiogenesis are two key processes in the maintenance of vascular homeostasis and involved in a wide array of vascular pathologies. Following these processes, extracellular matrix (ECM) provides the mechanical foundation for vascular walls. Lysyl oxidase (LOX), the key matrix-modifying enzyme, has been demonstrated to significantly affect structural abnormality and dysfunction in the blood vessels. The role of LOX in vascular remodeling and angiogenesis has always been the subject in the current medical research. Therefore, we presently make a summarization of the biosynthesis of LOX and the mechanisms involved in vascular remodeling and angiogenesis, as well as the role of LOX in diseases associated with vascular abnormalities and the therapeutic potential via targeting LOX. In particular, we give a proposal that LOX likely reshapes matrisome-associated genes expressions in the regulation of vascular remodeling and angiogenesis, which serves as a mechanistic insight into the critical role of LOX in these two aspects. Additionally, LOX has also dual effects on the vascular dysfunction, namely, inhibition of LOX for improving hypertension, restenosis and malignant tumor while activation of LOX for curing arterial aneurysm and dissection. LOX-targeted therapy may provide a promising therapeutic strategy for the treatment of various vascular pathologies associated with vascular remodeling and angiogenesis.

4.
J Affect Disord ; 339: 333-341, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37442447

ABSTRACT

BACKGROUND: The optimal dosage and method of esketamine for postpartum depressive symptoms (PDS) are unclear. We conducted a randomized controlled trial (RCT) to investigate the effect of different doses of esketamine on PDS in women undergoing cesarean section, with evidence of prenatal depression. METHODS: The three groups were high- (2 mg kg-1) and low-dose (1 mg kg-1) esketamine via patient controlled intravenous analgesia (PCIA), following an initial intravenous infusion of 0.25 mg kg-1 esketamine, compared to placebo (0.9 % saline infusion). All groups also received the sufentanil (2.2 µg kg-1). The primary outcome was the incidence of PDS at 7 and 42 days postpartum. The secondary outcomes were: the remission from depression and total EPDS scores at 7 days and 42 days postpartum; mean change from baseline in the EPDS score; postoperative analgesia. RESULTS: i). 0.25 mg kg-1 of esketamine intravenous infusion combined with 1 mg kg-1 (n = 99) or 2 mg kg-1 (n = 99) esketamine PCIA reduces PDS incidence at 7 days postpartum (p < 0.05), with high-dose esketamine PCIA also reduces PDS incidence 42 days postpartum (p < 0.05), compared to placebo (n = 97). ii). Low- and high-dose esketamine PCIA lowers NRS scores at rest within 48 h postoperatively (p < 0.01), with high-dose esketamine also reducing the NRS score during movement at 48 h postoperatively (p = 0.018). iii). Neither high- nor low-dose esketamine PCIA increased postoperative adverse reactions (p > 0.05). CONCLUSIONS: Esketamine (0.25 mg kg-1) intravenous infusion combined with 1 mg kg-1 or 2 mg kg-1 esketamine PCIA seems safe and with few adverse effects in the management of PDS and pain in women undergoing cesarean section. LIMITATIONS: The tolerability and safety of esketamine requires further investigation based on more specific scales; the transient side effects of esketamine could have biased the staff and patients. TRIAL REGISTRATION: ChiCTR-ROC-2000039069.


Subject(s)
Depression , Ketamine , Pregnancy , Female , Humans , Ketamine/adverse effects , Postpartum Period , Cesarean Section/adverse effects , Double-Blind Method
5.
Biochem Pharmacol ; 213: 115616, 2023 07.
Article in English | MEDLINE | ID: mdl-37211173

ABSTRACT

Cancer stem cells (CSCs) are the leading cause of recurrence and poor prognosis in non-small cell lung cancer (NSCLC). Eukaryotic translation initiation factor 3a (eIF3a) participates in many tumor development processes, such as metastasis, therapy resistance, and glycolysis, all of which are closely associated with the presence of CSCs. However, whether eIF3a maintains NSCLC-CSC-like properties remains to be elucidated. In this study, eIF3a was highly expressed in lung cancer tissues and was linked to poor prognosis. eIF3a was also highly expressed in CSC-enriched spheres compared with adherent monolayer cells. Moreover, eIF3a is required for NSCLC stem cell-like traits maintenance in vitro and in vivo. Mechanistically, eIF3a activates the Wnt/ß-catenin signaling pathway, promoting the transcription of cancer stem cell markers. Specifically, eIF3a promotes the transcriptional activation of ß-catenin and mediates its nuclear accumulation to form a complex with T cell factor 4 (TCF4). However, eIF3a has no significant effect on protein stability and translation. Proteomics analysis revealed that the candidate transcription factor, Yin Yang 1 (YY1), mediates the activated effect of eIF3a on ß-catenin. Overall, the findings of this study implied that eIF3a contributes to the maintenance of NSCLC stem cell-like characteristics through the Wnt/ß-catenin pathway. eIF3a is a potential target for the treatment and prognosis of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , beta Catenin/genetics , beta Catenin/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation , Lung Neoplasms/metabolism , Neoplastic Stem Cells , Transcriptional Activation , Wnt Signaling Pathway , YY1 Transcription Factor/metabolism
6.
Front Pharmacol ; 13: 990461, 2022.
Article in English | MEDLINE | ID: mdl-36160460

ABSTRACT

Background: Previous investigations have illustrated that lysyl oxidase family enzymes (LOXs) are contributing factors for tumor progression and remodeling immunomicroenvironment. However, it is scarce regarding comprehensive analysis of LOXs in the predictions of prognosis, chemotherapy and immunotherapy in glioma, the highly invasive brain tumor. Our present work aimed to explore the prognostic value, chemotherapeutic drug sensitivity and immunotherapy according to distinct LOXs expressions in glioma through bioinformatics analysis and experimental verification. Methods: We collected gene expression data and clinical characteristics from the public databases including Chinese Glioma Genome Atlas (CGGA)-325, CGGA-693, the Cancer Genome Atlas (TCGA), IMvigor210 and Van Allen 2015 cohorts. The correlations between the clinicopathological factors and differential LOXs expressions were analyzed. The ROC curve and Kaplan-Meier analysis were conducted to evaluate the prediction ability of prognosis. Chemotherapeutic drug sensitivity via distinct LOXs expression levels was predicted using the pRRophetic package. Immune score, immune cell infiltration and immune checkpoint expression levels were also analyzed through diverse algorithms in R software. Finally, mRNA and protein expressions of LOXs were validated in glioma cells (T98G and A172) by real-time quantitative PCR and Western blot, respectively. Results: Our results demonstrated that high levels of LOXs expressions were positively associated with glioma grades, older age and MGMT unmethylated status while elevations of LOXs were negatively correlated with IDH mutation or 1p/19q co-deletion. Furthermore, the glioma patients with low levels of LOXs also exhibited better prognosis. Also, differential LOXs expressions were associated with at least 12 chemotherapeutic drug sensitivity. Besides, it was also found that glioma patients with high LOXs expressions showed higher enrichment scores for immune cell infiltration and increased levels of immune checkpoints, suggesting the critical role of distinct LOXs expression levels for glioma immunotherapy. The predictive roles of LOXs expression in tumor immunotherapy were also validated in two immunotherapy cohorts including IMvigor 210 and Van Allen 2015. Experimental results revealed that expressions of LOX, LOXL1, LOXL2, and LOXL3 were higher in glioma cell lines at mRNA and protein levels. Conclusion: Our findings altogether indicate that LOXs have potent predictive value for prognosis, chemotherapy and immunotherapy in glioma patients.

7.
Front Pharmacol ; 13: 895608, 2022.
Article in English | MEDLINE | ID: mdl-35924040

ABSTRACT

Background: Hepatocellular carcinoma (HCC) is a common and deadly malignancy worldwide. Current treatment methods for hepatocellular carcinoma have many disadvantages; thus, it is urgent to improve the efficacy of these therapies. Glycolysis is critical in the occurrence and development of tumors. However, survival and prognosis biomarkers related to glycolysis in HCC patients remain to be fully identified. Methods: Glycolysis-related genes (GRGs) were downloaded from "The Molecular Signatures Database" (MSigDB), and the mRNA expression profiles and clinical information of HCC patients were obtained from TCGA. Consensus clustering was performed to classify the HCC patients into two subgroups. We used the least absolute shrinkage and selection operator (LASSO) regression analysis to construct the risk signature model. Kaplan-Meier (K-M) survival analysis was performed to evaluate the prognostic significance of the risk model, and the receiver operating characteristic (ROC) curve analysis was used to evaluate the prediction accuracy. The independent prediction ability of the risk model was validated by univariate and multivariate Cox regression analyses. The differences of immune infiltrates and relevant oncogenic signaling between different risk groups were compared. Finally, biological experiments were performed to explore the functions of screened genes. Results: HCC patients were classified into two subgroups, according to the expression of prognostic-related GRGs. Almost all GRGs categorized in cluster 2 showed upregulated expressions, whereas GRGs in cluster 1 conferred survival advantages. GSEA identified a positive correlation between cluster 2 and the glycolysis process. Ten genes were selected for risk signature construction. Patients were assigned to high-risk and low-risk groups based on the median risk score, and K-M survival analysis indicated that the high-risk group had a shorter survival time. Additionally, the risk gene signature can partially affect immune infiltrates within the HCC microenvironment, and many oncogenic pathways were enriched in the high-risk group, including glycolysis, hypoxia, and DNA repair. Finally, in vitro knockdown of ME1 suppressed proliferation, migration, and invasion of hepatocellular carcinoma cells. Conclusion: In our study, we successfully constructed and verified a novel glycolysis-related risk signature for HCC prognosis prediction, which is meaningful for classifying HCC patients and offers potential targets for the treatment of hepatocellular carcinoma.

8.
Antioxidants (Basel) ; 11(8)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36009321

ABSTRACT

Repetitive seizures, a common phenomenon in diverse neurologic conditions such as epilepsy, can undoubtedly cause neuronal injury and our prior work reveals that ferroptosis is a contributing factor of neuronal damage post seizure. However, there is no drug available in clinical practice for ameliorating seizure-induced neuronal impairment via targeting ferroptosis. Our present work aimed to explore whether D-penicillamine (DPA), an originally approved drug for treating Wilson's disease, inhibited neuronal ferroptosis and alleviated seizure-associated brain damage. Our findings revealed that DPA remarkably improved neuronal survival in kainic acid (KA)-treated mouse model. Furthermore, ferroptosis-associated indices including acyl-coA synthetase long chain family member 4 (ACSL4), prostaglandin-endoperoxide synthase 2 (Ptgs2) gene and lipid peroxide (LPO) level were significantly decreased in KA mouse model after DPA treatment. In a ferroptotic cell death model induced by glutamate or erastin, DPA was also validated to evidently suppress neuronal ferroptosis. The results from RNA-seq analysis indicated that Aqp11, a gene coding previously reported channel protein responsible for transporting water and small solutes, was identified as a molecular target by which DPA exerted anti-ferroptotic potential in neurons. The experimental results from in vivo Aqp11 siRNA transfer into the brain also confirmed that knockdown of Aqp11 abrogated the inhibitory effect of seizure-induced ferroptosis after DPA treatment, suggesting that the effects of DPA on ferroptosis process are dependent upon Aqp11. In conclusion, DPA can be repurposed to cure seizure disorders such as epilepsy.

9.
Front Neurosci ; 16: 892022, 2022.
Article in English | MEDLINE | ID: mdl-35784838

ABSTRACT

Objective: To investigate the potential pathogenic mechanism of temporal lobe epilepsy with hippocampal sclerosis (TLE+HS) by analyzing the expression profiles of microRNA/ mRNA/ lncRNA/ DNA methylation in brain tissues. Methods: Brain tissues of six patients with TLE+HS and nine of normal temporal or parietal cortices (NTP) of patients undergoing internal decompression for traumatic brain injury (TBI) were collected. The total RNA was dephosphorylated, labeled, and hybridized to the Agilent Human miRNA Microarray, Release 19.0, 8 × 60K. The cDNA was labeled and hybridized to the Agilent LncRNA+mRNA Human Gene Expression Microarray V3.0,4 × 180K. For methylation detection, the DNA was labeled and hybridized to the Illumina 450K Infinium Methylation BeadChip. The raw data was extracted from hybridized images using Agilent Feature Extraction, and quantile normalization was performed using the Agilent GeneSpring. P-value < 0.05 and absolute fold change >2 were considered the threshold of differential expression data. Data analyses were performed using R and Bioconductor. BrainSpan database was used to screen for signatures that were not differentially expressed in normal human hippocampus and cortex (data from BrainSpan), but differentially expressed in TLE+HS' hippocampus and NTP' cortex (data from our cohort). The strategy "Guilt by association" was used to predict the prospective roles of each important hub mRNA, miRNA, or lncRNA. Results: A significantly negative correlation (r < -0.5) was found between 116 pairs of microRNA/mRNA, differentially expressed in six patients with TLE+HS and nine of NTP. We examined this regulation network's intersection with target gene prediction results and built a lncRNA-microRNA-Gene regulatory network with structural, and functional significance. Meanwhile, we found that the disorder of FGFR3, hsa-miR-486-5p, and lnc-KCNH5-1 plays a key vital role in developing TLE+HS.

10.
BMC Genomics ; 23(1): 430, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35676651

ABSTRACT

BACKGROUND: Seizures are a common symptom in glioma patients, and they can cause brain dysfunction. However, the mechanism by which glioma-related epilepsy (GRE) causes alterations in brain networks remains elusive. OBJECTIVE: To investigate the potential pathogenic mechanism of GRE by analyzing the dynamic expression profiles of microRNA/ mRNA/ lncRNA in brain tissues of glioma patients. METHODS: Brain tissues of 16 patients with GRE and 9 patients with glioma without epilepsy (GNE) were collected. The total RNA was dephosphorylated, labeled, and hybridized to the Agilent Human miRNA Microarray, Release 19.0, 8 × 60 K. The cDNA was labeled and hybridized to the Agilent LncRNA + mRNA Human Gene Expression Microarray V3.0, 4 × 180 K. The raw data was extracted from hybridized images using Agilent Feature Extraction, and quantile normalization was performed using the Agilent GeneSpring. P-value < 0.05 and absolute fold change > 2 were considered the threshold of differential expression data. Data analyses were performed using R and Bioconductor. RESULTS: We found that 3 differentially expressed miRNAs (miR-10a-5p, miR-10b-5p, miR-629-3p), 6 differentially expressed lncRNAs (TTN-AS1, LINC00641, SNHG14, LINC00894, SNHG1, OIP5-AS1), and 49 differentially expressed mRNAs play a vitally critical role in developing GRE. The expression of GABARAPL1, GRAMD1B, and IQSEC3 were validated more than twofold higher in the GRE group than in the GNE group in the validation cohort. Pathways including ECM receptor interaction and long-term potentiation (LTP) may contribute to the disease's progression. Meanwhile, We built a lncRNA-microRNA-Gene regulatory network with structural and functional significance. CONCLUSION: These findings can offer a fresh perspective on GRE-induced brain network changes.


Subject(s)
Epilepsy , Glioma , MicroRNAs , RNA, Long Noncoding , Gene Regulatory Networks , Glioma/complications , Glioma/genetics , Glioma/metabolism , Humans , Long-Term Potentiation , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Messenger/genetics
11.
Free Radic Biol Med ; 179: 109-118, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34952157

ABSTRACT

Posttraumatic epilepsy (PTE) is a prevalent complication of brain trauma. Current anti-epileptic drugs available do not have satisfactory response to PTE. It is of desperate need to explore novel therapeutic approaches for curing PTE. Our prior work revealed that ferroptosis, a recently discovered mode of cell death, occurs in rodent model of PTE. In the present study, we aimed to further investigate the effect of ferrostatin-1 (Fer-1), a specific ferroptosis inhibitor, on seizure behavior and cognitive deficit in a mouse model of PTE. The preparation of PTE was performed by stereotaxical injection in the somatosensory cortex region of 50 mM FeCl3. Seizure activity was assessed via Racine scoring and electroencephalogram analysis. PTE-related cognitive function was evaluated by novel object recognition and Morris water maze tests. Ferroptosis-related indices including glutathione peroxidase (GPx) activity and protein expressions of 4-hydroxynonenal (4-HNE) were detected using a commercial kit and immunofluorescence, respectively. It was found that treatment with Fer-1 significantly exerted protective effects against acute seizure and memory decline, although no evident effect on epileptic progression. Fer-1 also exhibited good tolerability and safety as we observed that it hardly influenced the body weight. Furthermore, it was noted that administration of Fer-1 suppressed ferroptosis-related indices including GPx activity and protein expressions of 4-HNE in hippocampus. These data altogether indicate that Fer-1 has potent therapeutic effects against seizures and cognitive impairment following PTE-induced brain insult. Fer-1 may act as a promising drug for curing PTE patients.


Subject(s)
Cognitive Dysfunction , Ferroptosis , Animals , Chlorides , Cognition , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cyclohexylamines , Ferric Compounds , Humans , Mice , Phenylenediamines , Seizures/chemically induced , Seizures/drug therapy
12.
13.
ACS Omega ; 6(34): 22462, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34497936

ABSTRACT

[This corrects the article DOI: 10.1021/acsomega.1c01135.].

14.
ACS Omega ; 6(29): 18610-18622, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34337201

ABSTRACT

Hypertension adversely affects the quality of life in humans across modern society. Studies have attributed increased reactive oxygen species production to the pathophysiology of hypertension. So far, a specific drug to control the disease perfectly has not been developed. However, artichoke, an edible vegetable, plays an essential role in treating many diseases due to its potent antioxidant activities. The objective of this study is to evaluate the effect of artichoke bud extract (ABE) on heart tissue metabolomics of hypertensive rats. Spontaneously hypertensive rats and Wistar-Kyoto (WKY) rats were divided into six groups, then exposed to different doses comprising ABE, Enalapril Maleate, or 1% carboxylmethyl cellulose for 4 weeks. Their blood pressures were recorded at 0, 2, 3, and 4 weeks after the start of the test period. Thereafter, all rats were anesthetized, and blood was collected from their cardiac apexes. Then, we measured the levels for 15 kinds of serum biochemical parameters. An established orthogonal partial least square-discriminant analysis model completed the metabolomic analysis. Hypertensive rats in the ABE group exhibited well-controlled blood pressure, relative to those in the model group. Specifically, artichoke significantly lowered serum levels for total protein (TP), albumin (ALB), and uric acid (UA) in the hypertensive rats. This effect involved the action of eight metabolites, including guanine, 1-methylnicotinamide, p-aminobenzoic acid, NAD, NADH, uridine 5'-monophosphate, adenosine monophosphate, and methylmalonic acid. Collectively, these findings suggest that ABE may play a role in affecting oxidative stress and purine, nicotinate, and nicotinamide metabolism.

15.
CNS Neurosci Ther ; 27(8): 973-986, 2021 08.
Article in English | MEDLINE | ID: mdl-33969928

ABSTRACT

AIMS: Glioma is a highly invasive brain tumor, which makes prognosis challenging and renders patients resistant to various treatments. Induction of cell death is promising in cancer therapy. Ferroptosis, a recently discovered regulated cell death, can be induced for killing glioma cells. However, the prognostic prediction of ferroptosis-related genes (FRGs) in glioma remains elusive. METHODS: The mRNA expression profiles and gene variation and corresponding clinical data of glioma patients and NON-TUMOR control were downloaded from public databases. Risk score based on a FRGs signature was constructed in REMBRANDT cohort and validated in other datasets including CGGA-693, CGGA-325, and TCGA. RESULTS: Our results demonstrated that the majority of FRGs was differentially expressed among GBM, LGG, and NON-TUMOR groups (96.6%). Furthermore, the glioma patients with low-risk score exhibited a more satisfactory clinical outcome. The better prognosis was also validated in the glioma patients with low-risk score no matter to which grade they were affiliated. Functional analysis revealed that the high-risk score group was positively correlated with the enrichment scores for immune checkpoint blockade-related positive signatures, indicating the critical role of glioma immunotherapy via risk score. CONCLUSION: A novel FRGs-related risk score can predict prognosis and immunotherapy in glioma patients.


Subject(s)
Brain Neoplasms/genetics , Ferroptosis/physiology , Gene Expression Profiling/trends , Glioma/genetics , Immunotherapy/trends , Brain Neoplasms/diagnosis , Brain Neoplasms/therapy , Cohort Studies , Databases, Genetic/trends , Gene Expression Regulation, Neoplastic/physiology , Glioma/diagnosis , Glioma/therapy , Humans , Predictive Value of Tests , Prognosis
16.
J Mol Med (Berl) ; 99(7): 933-941, 2021 07.
Article in English | MEDLINE | ID: mdl-33928434

ABSTRACT

Connexins (Cxs) are ubiquitous transmembrane proteins that possess both channel function (e.g., formations of gap junction and hemichannel) and non-channel properties (e.g., gene transcription and protein-protein interaction). Several factors have been identified to play a role in the regulation of Cxs, which include those acting intracellularly, as redox potential, pH, intramolecular interactions, and post-translational modifications (e.g., phosphorylation, S-nitrosylation) as well as those acting extracellularly, such as Ca2+ and Mg2+. The relationship between redox signaling and Cxs attracts considerable attention in recent years. There is ample evidence showing that redox signaling molecules (e.g., hydrogen peroxide (H2O2), nitric oxide (NO)) affect Cxs-based channel function while the opening of Cx channels also triggers the transfer of various redox-related metabolites (e.g., reactive oxygen species, glutathione, nicotinamide adenine dinucleotide, and NO). On the basis of these evidences, we propose the existence of redox-Cxs crosstalk. In this review, we briefly discuss the interaction between redox signaling and Cxs and the implications of the intersection in disease pathology and future therapeutic interventions.


Subject(s)
Connexins/metabolism , Animals , Humans , Oxidation-Reduction , Signal Transduction
17.
Pharmacol Ther ; 226: 107861, 2021 10.
Article in English | MEDLINE | ID: mdl-33901506

ABSTRACT

Adequate food intake and relative abundance of dietary nutrients have undisputed effects on the brain function. There is now substantial evidence that dietary nutrition aids in the prevention and remediation of neurologic symptoms in diverse pathological conditions. The newly described influences of dietary factors on the alterations of mitochondrial dysfunction, epigenetic modification and neuroinflammation are important mechanisms that are responsible for the action of nutrients on the brain health. In this review, we discuss the state of evidence supporting that distinct dietary interventions including dietary supplement and dietary restriction have the ability to tackle neurological disorders using Alzheimer's disease, Parkinson's disease, stroke, epilepsy, traumatic brain injury, amyotrophic lateral sclerosis, Huntington's disease and multiple sclerosis as examples. Additionally, it is also highlighting that diverse potential mechanisms such as metabolic control, epigenetic modification, neuroinflammation and gut-brain axis are of utmost importance for nutrient supply to the risk of neurologic condition and therapeutic response. Finally, we also highlight the novel concept that dietary nutrient intervention reshapes metabolism-epigenetics-immunity cycle to remediate brain dysfunction. Targeting metabolism-epigenetics-immunity network will delineate a new blueprint for combating neurological weaknesses.


Subject(s)
Nervous System Diseases , Evidence-Based Practice , Forecasting , Humans , Nervous System Diseases/diet therapy
19.
Psychopharmacology (Berl) ; 238(1): 239-248, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33095288

ABSTRACT

OBJECTIVE: Olanzapine is widely prescribed for patients with mental disorders; however, it may induce metabolic dysfunction. Metformin is an efficient adjuvant for preventing olanzapine-induced metabolic dysfunction in clinical practice. Although the mechanism of how metformin prevents this metabolic dysfunction remains unknown, changes in the gut-liver axis are considered a potential explanation. METHODS: Forty-eight male rats were gavaged with olanzapine and/or metformin for 35 consecutive days. Body weight, food intake, and water intake were measured daily. Histopathological and biochemical tests were performed to evaluate the metabolic dysfunction. The 16S rRNA obtained from fecal bacterial DNA was assessed. RESULTS: Olanzapine treatment increased the body weight, blood glucose and triglyceride levels, and the number of adipocytes in the liver. While coadministration of metformin, there was a dose-dependent reverse of the abnormal changes induced by olanzapine treatment. Both olanzapine and metformin treatments altered the composition of the gut microbiota. Bacteroides acidifaciens and Lactobacillus gasseri were possibly played a positive role in metformin-mediated olanzapine-induced metabolic dysfunction prevention. CONCLUSION: Metformin prevented olanzapine-induced metabolic dysfunction and regulated the gut microbiota in a dose-dependent manner.


Subject(s)
Adjuvants, Pharmaceutic/pharmacology , Gastrointestinal Microbiome/drug effects , Liver/drug effects , Metabolic Diseases/prevention & control , Metformin/pharmacology , Olanzapine/adverse effects , Adjuvants, Pharmaceutic/administration & dosage , Animals , Bacteroides/isolation & purification , Blood Glucose/metabolism , Body Weight/drug effects , Dose-Response Relationship, Drug , Feces/microbiology , Humans , Lactobacillus gasseri/isolation & purification , Liver/metabolism , Male , Metabolic Diseases/chemically induced , Metformin/administration & dosage , Olanzapine/administration & dosage , RNA, Ribosomal, 16S/genetics , Rats
20.
Front Pharmacol ; 11: 601572, 2020.
Article in English | MEDLINE | ID: mdl-33362556

ABSTRACT

Epilepsy is a complex neurological disorder characterized by recurrent and unprovoked seizures. Neuronal death process is implicated in the development of repetitive epileptic seizures. Therefore, cell death can be harnessed for ceasing seizures and epileptogenesis. Oxidative stress is regarded as a contributing factor of neuronal death activation and there is compelling evidence supporting antioxidants hold promise in abrogating seizure-related cell modality. Lapatinib, a well-known anti-cancer drug, has been traditionally reported to exert anti-tumor effect via modulating oxidative stress and a recent work illustrates the improvement of encephalomyelitis in rodent models after lapatinib treatment. However, whether lapatinib is beneficial for inhibiting neuronal death and epileptic seizure remains unknown. Here, we found that lapatinib remarkably prevented kainic acid (KA)-epileptic seizures in mice and ferroptosis, a newly defined cell death which is associated with oxidative stress, was involved in the neuroprotection of lapatinib. In the ferroptotic cell death model, lapatinib exerted neuroprotection via restoring glutathione peroxidase 4 (GPX4). Treatment with GPX4 inhibitor ras-selective lethal small molecule 3 (RSL3) abrogated its anti-ferroptotic potential. In a mouse model of KA-triggered seizure, it was also validated that lapatinib blocked GPX4-dependent ferroptosis. It is concluded that lapatinib has neuroprotective potential against epileptic seizures via suppressing GPX4-mediated ferroptosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...