Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 454
Filter
1.
Food Funct ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860333

ABSTRACT

B vitamins and probiotics are commonly used dietary supplements with well-documented health benefits. However, their potential interactions remain poorly understood. This study aims to explore the effects and underlying mechanisms of the combined use of B vitamins and probiotics by liquid chromatography-triple quadrupole mass spectrometry analysis, pharmacokinetic modeling, and 16S rRNA gene sequencing. By intragastric administration of seven B vitamins and three Lactobacillus strains to healthy rats (n = 8 per group), we found that probiotics significantly promoted the absorption (by approximately 14.5% to 71.2%) of vitamins B1, B3, B5, and B12. By conducting in vitro experiments (n = 3 per group) and a pseudo-germ-free rat model-based pharmacokinetic study (n = 6 per group), we confirmed that probiotics primarily enhanced the B vitamin absorption through gut microbiota-mediated mechanisms, rather than by directly producing B vitamins. Furthermore, we evaluated the effects of B vitamins and probiotics on the colon and gut microbiota by treating the pseudo-germ-free rats with blank solution, B vitamins, probiotics, and B vitamins + probiotics (n = 5 per group), respectively. Histopathological examination showed that the combination of B vitamins and probiotics synergistically alleviated the rat colon damage. High-throughput genetic sequencing also revealed the synergistic effect of B vitamins and probiotics in modulating the gut microbiota, particularly increasing the abundance of Verrucomicrobia and Akkermansia. In summary, the combined administration of B vitamins and probiotics may have a higher efficacy than using them alone.

2.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 487-494, 2024 Jun 18.
Article in Chinese | MEDLINE | ID: mdl-38864135

ABSTRACT

OBJECTIVE: To unveil the pathological changes associated with demyelination in schizophrenia (SZ) and its consequential impact on interstitial fluid (ISF) drainage, and to investigate the therapeutic efficacy of ursolic acid (UA) in treating demyelination and the ensuing abnormalities in ISF drainage in SZ. METHODS: Female C57BL/6J mice, aged 6-8 weeks and weighing (20±2) g, were randomly divided into three groups: control, SZ model, and UA treatment. The control group received intraperitoneal injection (ip) of physiological saline and intragastric administration (ig) of 1% carboxymethylcellulose sodium (CMC-Na). The SZ model group was subjected to ip injection of 2 mg/kg dizocilpine maleate (MK-801) and ig administration of 1% CMC-Na. The UA treatment group underwent ig administration of 25 mg/kg UA and ip injection of 2 mg/kg MK-801. The treatment group received UA pretreatment via ig administration for one week, followed by a two-week drug intervention for all the three groups. Behavioral assessments, including the open field test and prepulse inhibition experiment, were conducted post-modeling. Subsequently, changes in the ISF partition drainage were investigated through fluorescent tracer injection into specific brain regions. Immunofluorescence analysis was employed to examine alterations in aquaporin 4 (AQP4) polarity distribution in the brain and changes in protein expression. Myelin reflex imaging using Laser Scanning Confocal Microscopy (LSCM) was utilized to study modifications in myelin within the mouse brain. Quantitative data underwent one-way ANOVA, followed by TukeyHSD for post hoc pairwise comparisons between the groups. RESULTS: The open field test revealed a significantly longer total distance [(7 949.39±1 140.55) cm vs. (2 831.01±1 212.72) cm, P < 0.001] and increased central area duration [(88.43±22.06) s vs. (56.85±18.58) s, P=0.011] for the SZ model group compared with the controls. The UA treatment group exhibited signifi-cantly reduced total distance [(2 415.80±646.95) cm vs. (7 949.39±1 140.55) cm, P < 0.001] and increased central area duration [(54.78±11.66) s vs. (88.43±22.06) s, P=0.007] compared with the model group. Prepulse inhibition test results demonstrated a markedly lower inhibition rate of the startle reflex in the model group relative to the controls (P < 0.001 for both), with the treatment group displaying significant improvement (P < 0.001 for both). Myelin sheath analysis indicated significant demyelination in the model group, while UA treatment reversed this effect. Fluorescence tracing exhibited a significantly larger tracer diffusion area towards the rostral cortex and reflux area towards the caudal thalamus in the model group relative to the controls [(13.93±3.35) mm2 vs. (2.79±0.94) mm2, P < 0.001 for diffusion area; (2.48±0.38) mm2 vs. (0.05±0.12) mm2, P < 0.001 for reflux area], with significant impairment of drainage in brain regions. The treatment group demonstrated significantly reduced tracer diffusion and reflux areas [(7.93±2.48) mm2 vs. (13.93±3.35) mm2, P < 0.001 for diffusion area; (0.50±0.30) mm2 vs. (2.48±0.38) mm2, P < 0.001 for reflux area]. Immunofluorescence staining revealed disrupted AQP4 polarity distribution and reduced AQP4 protein expression in the model group compared with the controls [(3 663.88±733.77) µm2 vs. (13 354.92±4 054.05) µm2, P < 0.001]. The treatment group exhibited restored AQP4 polarity distribution and elevated AQP4 protein expression [(11 104.68±3 200.04) µm2 vs. (3 663.88±733.77) µm2, P < 0.001]. CONCLUSION: UA intervention ameliorates behavioral performance in SZ mice, Thus alleviating hyperactivity and anxiety symptoms and restoring sensorimotor gating function. The underlying mechanism may involve the improvement of demyelination and ISF drainage dysregulation in SZ mice.


Subject(s)
Demyelinating Diseases , Disease Models, Animal , Extracellular Fluid , Mice, Inbred C57BL , Schizophrenia , Triterpenes , Ursolic Acid , Animals , Mice , Triterpenes/therapeutic use , Triterpenes/pharmacology , Schizophrenia/drug therapy , Female , Demyelinating Diseases/drug therapy , Extracellular Fluid/drug effects , Extracellular Fluid/metabolism , Dizocilpine Maleate , Aquaporin 4/metabolism
3.
Sci Total Environ ; 940: 173702, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830416

ABSTRACT

The structural variances of adsorbents play a crucial role in determining the number of effective adsorption sites and pretreatment performance. However, there is still a gap in comprehending the impact of different carbon structural adsorbents on membrane fouling. Therefore, this study aimed to compare the efficacy of granular activated carbon (GAC), powdered activated carbon (PAC), and activated carbon fiber (ACF) in mitigating membrane fouling during municipal sewage reclamation using an aerobic granular sludge membrane bioreactor (AGMBR). The results demonstrated that the utilization of PAC significantly enhanced the normalized flux and reduced fouling resistance in comparison to GAC and ACF systems. PAC effectively adsorbed low and medium-molecular-weight pollutants present in raw sewage, resulting in an increase in average particle size and a decrease in foulant content on the membrane surface. The Hermia model indicated that adsorption pretreatment minimized standard blocking while promoting the formation of a sparse and porous cake layer. Moreover, according to the extended Derjaguin-Landau-Verwey-Overbeek theory, PAC has been demonstrated as the optimal antifouling system owing to its enhanced repulsion between membrane-foulant and foulant-foulant interactions. Correlation analysis revealed that the exceptional antifouling performance of the PAC system was due to its high removal rates of chemical oxygen demand (~78 %) and suspended solids (~97 %). This research offers valuable insights into the mitigation of membrane fouling through the utilization of adsorbents featuring diverse carbon structures.

4.
ACS Nano ; 18(21): 13745-13754, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38739489

ABSTRACT

The quest for sustainable urea production has directed attention toward electrocatalytic methods that bypass the energy-intensive traditional Haber-Bosch process. This study introduces an approach to urea synthesis through the coreduction of CO2 and NO3- using copper-doped molybdenum diselenide (Cu-MoSe2) with Cu-Mo dual sites as electrocatalysts. The electrocatalytic activity of the Cu-MoSe2 electrode is characterized by a urea yield rate of 1235 µg h-1 mgcat.-1 at -0.7 V versus the reversible hydrogen electrode and a maximum Faradaic efficiency of 23.43% at -0.6 V versus RHE. Besides, a continuous urea production with an enhanced average yield rate of 9145 µg h-1 mgcat.-1 can be achieved in a flow cell. These figures represent a substantial advancement over that of the baseline MoSe2 electrode. Density functional theory (DFT) calculations elucidate that Cu doping accelerates *NO2 deoxygenation and significantly decreases the energy barriers for C-N bond formation. Consequently, Cu-MoSe2 demonstrates a more favorable pathway for urea production, enhancing both the efficiency and feasibility of the process. This study offers valuable insights into electrode design and understanding of the facilitated electrochemical pathways.

5.
Thromb Res ; 238: 19-26, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643522

ABSTRACT

Platelets, anucleate blood cells derive from megakaryocytes, are involved in cardiovascular diseases and tumors. FcγRIIA, the only FcγR expressed on human platelets, is known for its role in immune-related diseases. A growing body of evidence reveals that platelet FcγRIIA is a potential target for the prevention and control of cardiovascular disease and cancer, and is an advantageous biomarker. In this review, we describe the structure and physiological function of platelet FcγRIIA, its regulatory role in cardiovascular disease and cancer, and its potential clinical application.


Subject(s)
Blood Platelets , Cardiovascular Diseases , Neoplasms , Receptors, IgG , Humans , Receptors, IgG/metabolism , Blood Platelets/metabolism , Cardiovascular Diseases/blood , Cardiovascular Diseases/metabolism , Neoplasms/blood , Biomarkers/blood , Animals
6.
Water Res ; 257: 121674, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38678835

ABSTRACT

The occurrence of seasonal algae blooms represents a huge dilemma for water resource management and has garnered widespread attention. Therefore, finding methods to control algae pollution and improve water quality is urgently needed. Moderate oxidation has emerged as a feasible way of algae-laden water treatment and is an economical and prospective strategy for controlling algae and endogenous and exogenous pollutants. Despite this, a comprehensive understanding of algae-laden water treatment by moderate oxidation, particularly principles and summary of advanced strategies, as well as challenges in moderate oxidation application, is still lacking. This review outlines the properties and characterization of algae-laden water, which serve as a prerequisite for assessing the treatment efficiency of moderate oxidation. Biomass, cell viability, and organic matter are key components to assessing moderate oxidation performance. More importantly, the recent advancements in employing moderate oxidation as a treatment or pretreatment procedure were examined, and the suitability of different techniques was evaluated. Generally, moderate oxidation is more promising for improving the solid-liquid separation process by the reduction of cell surface charge (stability) and removal/degradation of the soluble algae secretions. Furthermore, this review presents an outlook on future research directions aimed at overcoming the challenges encountered by existing moderate oxidation technologies. This comprehensive examination aims to provide new and valuable insights into the moderate oxidation process.


Subject(s)
Oxidation-Reduction , Water Purification , Water Purification/methods , Biomass , Eutrophication , Water/chemistry
7.
Ophthalmol Ther ; 13(6): 1757-1772, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38676875

ABSTRACT

INTRODUCTION: Chronic non-infectious uveitis affecting the posterior segment (NIU-PS), which can be recurrent and persistent for numerous years, mainly affects people of working age and significantly increases the risk of visual impairment. This study aimed to investigate the cost-effectiveness of fluocinolone acetonide intravitreal (FAI) implant in the treatment of patients with chronic NIU-PS from the Chinese healthcare perspective. METHODS: A Markov model with a 2-week cycle was constructed from the perspective of the Chinese healthcare system over a lifetime time horizon. The model consists of four health states: on-treatment, treatment failure, blindness, and death. The outcomes for effectiveness were based on the Chinese real-world study (RWS). Utilities and mortality rates were derived from published literature and standard sources. Costs were determined from the MENET website, prices of medical service items at local providers, published literature, and expert surveys. Outcomes were measured in quality-adjusted life years (QALYs). Sensitivity analyses were performed to account for the impact of uncertainty. RESULTS: It was estimated that in the base case, the FAI implant provided 0.43 incremental QALYs compared with the limited current practice (LCP) at an additional cost of $7503.72 (¥50,575.05), resulting in an incremental cost-effectiveness ratio (ICER) of $17,373.49 (¥117,097.33) per QALY gained. Parameters related to utility emerged as the primary influencers on the outcomes. In probabilistic sensitivity analysis (PSA), considering the willingness-to-pay (WTP) threshold of $19,072 (¥128,547) and $38,145 (¥257,094), the FAI implant had 67.70% and 99.50% probability of being cost-effective, respectively. As demonstrated in the scenario analysis, if the FAI implant aligns its price reduction with the average rate from the 2023 negotiation of the National Reimbursement Drug List (NRDL), it would result in lower costs and represent an absolute advantage. CONCLUSIONS: The FAI implant, which can effectively reduce the recurrence rate and maintain the incremental costs within the WTP limit, is likely to be cost-effective in treating chronic NIU-PS in China.

8.
Front Endocrinol (Lausanne) ; 15: 1344262, 2024.
Article in English | MEDLINE | ID: mdl-38559696

ABSTRACT

Obesity, a multifactorial disease with many complications, has become a global epidemic. Weight management, including dietary supplementation, has been confirmed to provide relevant health benefits. However, experimental evidence and mechanistic elucidation of dietary supplements in this regard are limited. Here, the weight loss efficacy of MHP, a commercial solid beverage consisting of mulberry leaf aqueous extract and Hippophae protein peptides, was evaluated in a high-fat high-fructose (HFF) diet-induced rat model of obesity. Body component analysis and histopathologic examination confirmed that MHP was effective to facilitate weight loss and adiposity decrease. Pathway enrichment analysis with differential metabolites generated by serum metabolomic profiling suggests that PPAR signal pathway was significantly altered when the rats were challenged by HFF diet but it was rectified after MHP intervention. RNA-Seq based transcriptome data also indicates that MHP intervention rectified the alterations of white adipose tissue mRNA expressions in HFF-induced obese rats. Integrated omics reveals that the efficacy of MHP against obesogenic adipogenesis was potentially associated with its regulation of PPARγ and FGFR1 signaling pathway. Collectively, our findings suggest that MHP could improve obesity, providing an insight into the use of MHP in body weight management.


Subject(s)
Hippophae , Morus , Rats , Animals , PPAR gamma/genetics , PPAR gamma/metabolism , Hippophae/metabolism , Morus/metabolism , Diet, High-Fat/adverse effects , Obesity/metabolism , Adipose Tissue, White/metabolism , Signal Transduction , Weight Loss
9.
Sci Transl Med ; 16(743): eadk5395, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630847

ABSTRACT

Endoscopy is the primary modality for detecting asymptomatic esophageal squamous cell carcinoma (ESCC) and precancerous lesions. Improving detection rate remains challenging. We developed a system based on deep convolutional neural networks (CNNs) for detecting esophageal cancer and precancerous lesions [high-risk esophageal lesions (HrELs)] and validated its efficacy in improving HrEL detection rate in clinical practice (trial registration ChiCTR2100044126 at www.chictr.org.cn). Between April 2021 and March 2022, 3117 patients ≥50 years old were consecutively recruited from Taizhou Hospital, Zhejiang Province, and randomly assigned 1:1 to an experimental group (CNN-assisted endoscopy) or a control group (unassisted endoscopy) based on block randomization. The primary endpoint was the HrEL detection rate. In the intention-to-treat population, the HrEL detection rate [28 of 1556 (1.8%)] was significantly higher in the experimental group than in the control group [14 of 1561 (0.9%), P = 0.029], and the experimental group detection rate was twice that of the control group. Similar findings were observed between the experimental and control groups [28 of 1524 (1.9%) versus 13 of 1534 (0.9%), respectively; P = 0.021]. The system's sensitivity, specificity, and accuracy for detecting HrELs were 89.7, 98.5, and 98.2%, respectively. No adverse events occurred. The proposed system thus improved HrEL detection rate during endoscopy and was safe. Deep learning assistance may enhance early diagnosis and treatment of esophageal cancer and may become a useful tool for esophageal cancer screening.


Subject(s)
Deep Learning , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Precancerous Conditions , Humans , Middle Aged , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/epidemiology , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Prospective Studies , Precancerous Conditions/pathology
10.
Front Immunol ; 15: 1379742, 2024.
Article in English | MEDLINE | ID: mdl-38596670

ABSTRACT

Background: Kidney transplantation is considered the most effective treatment for end-stage renal failure. Recent studies have shown that the significance of the immune microenvironment after kidney transplantation in determining prognosis of patients. Therefore, this study aimed to conduct a bibliometric analysis to provide an overview of the knowledge structure and research trends regarding the immune microenvironment and survival in kidney transplantation. Methods: Our search included relevant publications from 2013 to 2023 retrieved from the Web of Science core repository and finally included 865 articles. To perform the bibliometric analysis, we utilized tools such as VOSviewer, CiteSpace, and the R package "bibliometrix". The analysis focused on various aspects, including country, author, year, topic, reference, and keyword clustering. Results: Based on the inclusion criteria, a total of 865 articles were found, with a trend of steady increase. China and the United States were the countries with the most publications. Nanjing Medical University was the most productive institution. High-frequency keywords were clustered into 6 areas, including kidney transplantation, transforming growth factor ß, macrophage, antibody-mediated rejection, necrosis factor alpha, and dysfunction. Antibody mediated rejection (2019-2023) was the main area of research in recent years. Conclusion: This groundbreaking bibliometric study comprehensively summarizes the research trends and advances related to the immune microenvironment and survival after kidney transplantation. It identifies recent frontiers of research and highlights promising directions for future studies, potentially offering fresh perspectives to scholars in the field.


Subject(s)
Kidney Transplantation , Humans , Antibodies , Bibliometrics , China , Cluster Analysis
11.
Adv Sci (Weinh) ; : e2308337, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572504

ABSTRACT

Physical unclonable functions (PUFs) have emerged as a promising encryption technology, utilizing intrinsic physical identifiers that offer enhanced security and tamper resistance. Multi-level PUFs boost system complexity, thereby improving system reliability and fault tolerance. However, crosstalk-free multi-level PUFs remain a persistent challenge. In this study, a hierarchical PUF system that harnesses the spontaneous phase separation of silk fibroin /PVA blend and the random distribution of silicon-vacancy diamonds within the blend is presented. The thermodynamic instability of phase separation and inherent unpredictability of diamond dispersion gives rise to intricate random patterns at two distinct scales, enabling time-efficient hierarchical authentication for cryptographic keys. These patterns are complementary yet independent, inherently resistant to replication and damage thus affording robust security and reliability to the proposed system. Furthermore, customized authentication algorithms are constructed: visual PUFs authentication utilizes neural network combined structural similarity index measure, while spectral PUFs authentication employs Hamming distance and cross-correlation bit operation. This hierarchical PUF system attains a high recognition rate without interscale crosstalk. Additionally, the coding capacity is exponentially enhanced using M-ary encoding to reinforce multi-level encryption. Hierarchical PUFs hold significant potential for immediate application, offering unprecedented data protection and cryptographic key authentication capabilities.

12.
Adv Sci (Weinh) ; : e2402240, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605604

ABSTRACT

Single atomic catalysts have shown great potential in efficiently electro-converting O2 to H2O2 with high selectivity. However, the impact of coordination environment and introduction of extra metallic aggregates on catalytic performance still remains unclear. Herein, first a series of carbon-based catalysts with embedded coupling Ni single atomic sites and corresponding metallic nanoparticles at adjacent geometry is synthesized. Careful performance evaluation reveals NiSA/NiNP-NSCNT catalyst with precisely controlled active centers of synergetic adjacent Ni-N4S single sites and crystalline Ni nanoparticles exhibits a high H2O2 selectivity over 92.7% within a wide potential range (maximum selectivity can reach 98.4%). Theoretical studies uncover that spatially coupling single atomic NiN4S sites with metallic Ni aggregates in close proximity can optimize the adsorption behavior of key intermediates *OOH to achieve a nearly ideal binding strength, which thus affording a kinetically favorable pathway for H2O2 production. This strategy of manipulating the interaction between single atoms and metallic aggregates offers a promising direction to design new high-performance catalysts for practical H2O2 electrosynthesis.

13.
Article in English | MEDLINE | ID: mdl-38686439

ABSTRACT

BACKGROUND AND AIM: The purpose of the current study was to investigate the predictive value of hepatitis B core-related antigen (HBcrAg) on the occurrence and recurrence of hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB). METHODS: We searched PubMed, Embase, Scopus, and Web of Science from database inception to April 6, 2023. Pooled hazard ratio (HR) or odds ratio (OR) with 95% confidence interval (CI) was calculated for the occurrence and recurrence of HCC. RESULTS: Of the 464 articles considered, 18 articles recruiting 10 320 patients were included. The pooled results showed that high serum HBcrAg level was an independent risk factor for the occurrence of HCC in CHB patients (adjusted HR = 3.12, 95% CI: 2.40-4.06, P < 0.001, I2 = 43.2%, P = 0.043; OR = 5.65, 95% CI: 3.44-5.82, P < 0.001, I2 = 0.00%, P = 0.42). Further subgroup analysis demonstrated that the predictive ability of HBcrAg for the occurrence of HCC is not influenced by the hepatitis B e antigen (HBeAg) status or the use of nucleoside/nucleotide analogs (NAs). In addition, our meta-analysis also suggests that HBcrAg is a predictor of HCC recurrence (adjusted HR = 1.71, 95% CI: 1.26-2.32, P < 0.001, I2 = 7.89%, P = 0.031). CONCLUSIONS: For patients with CHB, serum HBcrAg may be a potential predictive factor for the occurrence of HCC, regardless of HBeAg status or NA treatment. It may also serve as a novel prognostic biomarker for the recurrence of HCC. More studies are needed to confirm our conclusions.

14.
Expert Rev Anticancer Ther ; 24(5): 303-312, 2024 May.
Article in English | MEDLINE | ID: mdl-38623811

ABSTRACT

BACKGROUND: The effect of age, sex, and eastern cooperative oncology group performance status (ECOG PS) on the efficacy and safety of immune checkpoint inhibitor (ICI) therapy among hepatocellular carcinoma (HCC) patients remains elusive. Thus, a meta-analysis was conducted to evaluate whether such effects exist. RESEARCH DESIGN AND METHODS: Eligible studies in PubMed, Embase, and Cochrane Library databases were retrieved. RESULTS: One-hundred-and-eleven studies involving 14,768 HCC patients were included. The findings indicated that the ECOG PS didn't have a significant effect on the ORR and PFS in ICI-treated HCC patients (higher ECOG PS vs. lower ECOG PS: ORR: OR = 0.78, 95%CI = 0.55-1.10; PFS: HR = 1.15, 95%CI = 0.97-1.35), while those patients with a higher ECOG PS may have a worse OS (HR = 1.52, 95% CI = 1.26-1.84). There is no significant evidence of the effect of age (older vs. younger) or sex (males vs. females) on the efficacy of ICI therapy in HCC. CONCLUSION: ICI therapy in HCC should not be restricted strictly to certain patients in age or sex categories, while HCC patients with higher ECOG PS may require closer medication or follow-up strategy during ICI therapy. PROSPERO REGISTRATION: CRD42024518407.


Subject(s)
Carcinoma, Hepatocellular , Immune Checkpoint Inhibitors , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/pharmacology , Age Factors , Sex Factors , Male , Female , Progression-Free Survival
15.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(3): 258-261, 2024 Mar 15.
Article in Chinese | MEDLINE | ID: mdl-38557377

ABSTRACT

OBJECTIVES: To evaluate the incidence rate of Duchenne muscular dystrophy (DMD) in the male newborns in the Ningxia region and establish a critical threshold for screening DMD in newborns to distinguish between the normal population and affected individuals. METHODS: A total of 10 000 male newborns were screened using immunofluorescence analysis of creatine kinase isoenzyme concentrations in heel spot dried blood specimens. Newborns with the concentrations higher than the critical threshold were recalled for serum creatine kinase measurements. Genetic testing was performed to confirm diagnosis in cases showing abnormalities. RESULTS: Among the screened 10 000 male newborns, two were confirmed to have DMD through genetic testing, resulting in a preliminary estimated incidence rate of 1/5 000 for male newborns in the Ningxia region. The critical threshold for creatine kinase isoenzyme concentration in newborns in this region was determined to be 468.57 ng/mL. CONCLUSIONS: Screening for DMD in newborns is feasible in the Ningxia region. Early screening, diagnosis, and treatment of DMD can improve the quality of life for affected individuals and help families make informed decisions regarding further pregnancies.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Male , Infant, Newborn , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Isoenzymes , Quality of Life , Neonatal Screening/methods , Creatine Kinase
16.
Small ; : e2311302, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429242

ABSTRACT

The release of nitrates into the environment leads to contaminated soil and water that poses a health risk to humans and animals. Due to the transition to renewable energy-based technologies, an electrochemical approach is an emerging option that can selectively produce valuable ammonia from nitrate sources. However, traditional metal-based electrocatalysts often suffer from low nitrate adsorption that reduces NH3  production rates. Here, a Ni-GaOOH-C/Ga electrocatalyst for electrochemical nitrate conversion into NH3 is synthesized via a low energy atmospheric-pressure plasma process that reduces CO2  into highly dispersed activated carbon on dispersed Ni─GaOOH particles produced from a liquid metal Ga─Ni alloy precursor. Nitrate conversion rates of up to 26.3 µg h-1  mg-1 cat  are achieved with good stability of up to 20 h. Critically, the presence of carbon centers is central to improved performance where both Ni─C and NiO─C interfaces act as NO3-  adsorption and reduction centers during the reaction. Density functional theory (DFT) calculations indicate that the NiO─C and Ni─C reaction sites reduce the Gibbs free energy required for NO3-  reduction to NH3  compared to NiO and Ni. Importantly, catalysts without carbon centers do not produce NH3 , emphasizing the unique effects of incorporating carbon nanoparticles into the electrocatalyst.

17.
Transpl Immunol ; 84: 102022, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38452986

ABSTRACT

BACKGROUND: Mesenchymal stem cell therapy is a new treatment for immune rejection in heart transplantation. The aim of this paper is to investigate the effect of human amniotic mesenchymal stem cells (hAMSCs) on alleviating immune rejection of allogeneic heart transplantation in mice and its possible underlying mechanism. METHODS: We injected hAMSCs into cervical ectopic heart transplantation model mice via tail vein to observe the survival time, the pathological changes of donor myocardium, and the fluorescent distribution of hAMSCs after the transplantation. MicroRNAs (miRs) with significantly differential expression were obtained by RNA sequencing and bioinformatic analysis, and a dual luciferase reporter gene assay together with real-time quantitative PCR (qRT-PCR) was performed to verify the relationship between miRs and their targeting genes. RESULTS: The intervention of hAMSCs prolonged the graft survival time and alleviated the pathological damage of the donor heart. The injected hAMSCs were distributed mainly in the liver, spleen, and kidney, only a very small portion in the donor and recipient hearts. In the allogeneic transplantation models, the expression of miR-34b-5p significantly increased after hAMSC treatment. MiR-34b-5p showed a knockdown effect on gene Fc gamma receptor 2B (FCGR2B). CONCLUSIONS: hAMSCs can reduce the immune rejection injury after allogeneic heart transplantation. This effect may be associated with the upregulation of miR-34b-5p expression to knock down its targeting gene FCGR2B.


Subject(s)
Amnion , Graft Rejection , Heart Transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , MicroRNAs , Transplantation, Homologous , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Graft Rejection/immunology , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/immunology , Amnion/cytology , Mice, Inbred BALB C , Cells, Cultured , Disease Models, Animal , Mice, Inbred C57BL , Graft Survival/immunology , Female , Male
18.
Chem Sci ; 15(9): 3330-3338, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38425530

ABSTRACT

The reduction of CO2 into value-added chemicals and fuels has been actively studied as a promising strategy for mitigating carbon dioxide emissions. However, the dilemma for the experimentalist in choosing an appropriate reaction medium and neglecting the effect of solvent ions when using a simple thermochemical model, normally leads to the disagreement between experimental observations and theoretical calculations. In this work, by considering the effects of both the anion and cation, a more realistic CO2 reduction environment at the solid-liquid interface between copper and solvent ions has been systematically studied by using ab initio molecular dynamics and density functional theory. We revealed that the co-occurrence of alkali ions (K+) and halide ions (F-, Cl-, Br-, and I-) in the electric double layer (EDL) can enhance the adsorption of CO2 by more than 0.45 eV compared to that in pure water, and the calculated energy barrier for CO-CO coupling also decreases 0.32 eV in the presence of I ion on a negatively charged copper electrode. The hydrated ions can modulate the distribution of the charge near the solid-liquid interface, which significantly promotes CO2 reduction and meanwhile impedes the hydrogen evolution reaction. Therefore, our work unveils the significant role of halide ions at the electrode-electrolyte interface for promoting CO2 reduction on copper electrode.

19.
Cell Death Dis ; 15(2): 155, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378644

ABSTRACT

Mitochondrial transfer plays an important role in various diseases, and many mitochondrial biological functions can be regulated by HMGB1. To explore the role of mitochondrial transfer in hepatocellular carcinoma (HCC) and its relationship with HMGB1, field emission scanning electron microscopy, immunofluorescence, and flow cytometry were used to detect the mitochondrial transfer between HCC cells. We found that mitochondrial transfer between HCC cells was confirmed using tunnel nanotubes (TNTs). The transfer of mitochondria from the highly invasive HCC cells to the less invasive HCC cells could enhance the migration and invasion ability of the latter. The hypoxic conditions increased the mitochondrial transfer between HCC cells. Then the mechanism was identified using co-immunoprecipitation, luciferase reporter assay, and chromatin immunoprecipitation. We found that RHOT1, a mitochondrial transport protein, promoted mitochondrial transfer and the migration and metastasis of HCC cells during this process. Under hypoxia, HMGB1 further regulated RHOT1 expression by increasing the expression of NFYA and NFYC subunits of the NF-Y complex. RAC1, a protein associated with TNTs formation, promoted mitochondrial transfer and HCC development. Besides, HMGB1 regulated RAC1 aggregation to the cell membrane under hypoxia. Finally, the changes and significance of related molecules in clinical samples of HCC were analyzed using bioinformatics and tissue microarray analyses. We found that HCC patients with high HMGB1, RHOT1, or RAC1 expression exhibited a relatively shorter overall survival period. In conclusion, under hypoxic conditions, HMGB1 promoted mitochondrial transfer and migration and invasion of HCC cells by increasing the expression of mitochondrial transport protein RHOT1 and TNTs formation-related protein RAC1.


Subject(s)
Carcinoma, Hepatocellular , HMGB1 Protein , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Carrier Proteins/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Hypoxia/genetics , Liver Neoplasms/pathology , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/metabolism
20.
J Cancer ; 15(3): 841-857, 2024.
Article in English | MEDLINE | ID: mdl-38213716

ABSTRACT

Background: Anoikis, a mechanism of programmed apoptosis, plays an important role in growth and metastasis of tumors. However, there are still few available comprehensive reports on the impact of anoikis on colorectal cancer. Method: A clustering analysis was done on 133 anoikis-related genes in GSE39582, and we compared clinical features between clusters, the tumor microenvironment was analyzed with algorithms such as "Cibersort" and "ssGSEA". We investigated risk scores of clinical feature groups and anoikis-associated gene mutations after creating a predictive model. We incorporated clinical traits to build a nomogram. Additionally, the quantitative real-time PCR was employed to investigate the mRNA expression of selected anoikis-associated genes. Result: We identified two anoikis-related clusters with distinct prognoses, clinical characteristics, and biological functions. One of the clusters was associated with anoikis resistance, which activated multiple pathways encouraging tumor metastasis. In our prognostic model, oxaliplatin may be a sensitive drug for low-risk patients. The nomogram showed good ability to predict survival time. And SIRT3, PIK3CA, ITGA3, DAPK1, and CASP3 increased in CRC group through the PCR assay. Conclusion: Our study identified two distinct modes of anoikis in colorectal cancer, with active metastasis-promoting pathways inducing an anti-anoikis subtype, which has a stronger propensity for metastasis and a worse prognosis than an anoikis-activated subtype. Massive immune cell infiltration may be an indicator of anoikis resistance. Anoikis' role in the colorectal cancer remains to be investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...