Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Microb Cell Fact ; 23(1): 179, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890717

ABSTRACT

BACKGROUND: Human lysozyme (hLYZ) is a natural antibacterial protein with broad applications in food and pharmaceutical industries. Recombinant production of hLYZ in Komagataella phaffii (K. phaffii) has attracted considerable attention, but there are very limited strategies for its hyper-production in yeast. RESULTS: Here through Atmospheric and Room Temperature Plasma (ARTP)-based mutagenesis and transcriptomic analysis, the expression of two genes MYO1 and IQG1 encoding the cytokinesis core proteins was identified downregulated along with higher hLYZ production. Deletion of either gene caused severe cytokinesis defects, but significantly enhanced hLYZ production. The highest hLYZ yield of 1,052,444 ± 23,667 U/mL bioactivity and 4.12 ± 0.11 g/L total protein concentration were obtained after high-density fed-batch fermentation in the Δmyo1 mutant, representing the best production of hLYZ in yeast. Furthermore, O-linked mannose glycans were characterized on this recombinant hLYZ. CONCLUSIONS: Our work suggests that cytokinesis-based morphology engineering is an effective way to enhance the production of hLYZ in K. phaffii.


Subject(s)
Muramidase , Recombinant Proteins , Saccharomycetales , Muramidase/metabolism , Muramidase/genetics , Muramidase/biosynthesis , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomycetales/metabolism , Saccharomycetales/genetics , Humans , Fermentation , Cytokinesis , Metabolic Engineering/methods , Batch Cell Culture Techniques
2.
Commun Biol ; 6(1): 1243, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38066175

ABSTRACT

Protein post-translational modifications (PTMs) with various acyl groups play central roles in Streptomyces. But whether these acyl groups can be further modified, and the influences of these potential modifications on bacterial physiology have not been addressed. Here in Streptomyces roseosporus with rich crotonylation, a luciferase monooxygenase LimB is identified to elaborately regulate the crotonylation level, morphological development and antibiotic production by oxidation on the crotonyl groups of an acetyl-CoA synthetase Acs. This chemical modification on crotonylation leads to Acs degradation via the protease ClpP1/2 pathway and lowered intracellular crotonyl-CoA pool. Thus, we show that acyl groups after PTMs can be further modified, herein named post-PTM modification (PPM), and LimB is a PTM modifier to control the substrate protein turnover for cell development of Streptomyces. These findings expand our understanding of the complexity of chemical modifications on proteins for physiological regulation, and also suggest that PPM would be widespread.


Subject(s)
Ligases , Streptomyces , Acetyl Coenzyme A , Mixed Function Oxygenases , Proteins
3.
Front Bioeng Biotechnol ; 11: 1225849, 2023.
Article in English | MEDLINE | ID: mdl-37456716

ABSTRACT

Streptomyces is renowned for its abundant production of bioactive secondary metabolites, but most of these natural products are produced in low yields. Traditional rational network refactoring is highly dependent on the comprehensive understanding of regulatory mechanisms and multiple manipulations of genome editing. Though random mutagenesis is fairly straightforward, it lacks a general and effective strategy for high throughput screening of the desired strains. Here in an antibiotic daptomycin producer S. roseosporus, we developed a dual-reporter system at the native locus of the daptomycin gene cluster. After elimination of three enzymes that potentially produce pigments by genome editing, a gene idgS encoding the indigoidine synthetase and a kanamycin resistant gene neo were integrated before and after the non-ribosomal peptidyl synthetase genes for daptomycin biosynthesis, respectively. After condition optimization of UV-induced mutagenesis, strains with hyper-resistance to kanamycin along with over-production of indigoidine were efficiently obtained after one round of mutagenesis and target screening based on the dual selection of the reporter system. Four mutant strains showed increased production of daptomycin from 1.4 to 6.4 folds, and significantly improved expression of the gene cluster. Our native-locus dual reporter system is efficient for targeting screening after random mutagenesis and would be widely applicable for the effective engineering of Streptomyces species and hyper-production of these invaluable natural products for pharmaceutical development.

4.
Angew Chem Int Ed Engl ; 62(5): e202214814, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36461785

ABSTRACT

Efficient biosynthesis of microbial bioactive natural products (NPs) is beneficial for the survival of producers, while self-protection is necessary to avoid self-harm resulting from over-accumulation of NPs. The underlying mechanisms for the effective but tolerable production of bioactive NPs are not well understood. Herein, in the biosynthesis of two fungal polyketide mycotoxins aurovertin E (1) and asteltoxin, we show that the cyclases in the gene clusters promote the release of the polyketide backbone, and reveal that a signal peptide is crucial for their subcellular localization and full activity. Meanwhile, the fungus adopts enzymatic acetylation as the major detoxification pathway of 1. If intermediates are over-produced, the non-enzymatic shunt pathways work as salvage pathways to avoid excessive accumulation of the toxic metabolites for self-protection. These findings provided new insight into the interplay of efficient backbone release and multiple detoxification strategies for the production of fungal bioactive NPs.


Subject(s)
Mycotoxins , Polyketides , Polyketides/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Protein Processing, Post-Translational , Multigene Family
5.
J Agric Food Chem ; 71(1): 311-319, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36571252

ABSTRACT

Mycotoxins have substantial impacts on agricultural production and food preservation. Some have high similarities in bioactivity but subtle differences on structures from various fungal producers. Understanding of their complex cross-biosynthesis will provide new insights into enzyme functions and food safety. Here, based on structurally related mycotoxins, such as aurovertins, asteltoxin, and citreoviridin, we showed that methyltransferase (MT)-catalyzed methylation is required for efficient oxidation and polyketide stability. MTs have broad interactions with polyketide synthases and flavin-containing monooxygenases (FMOs), while MT AstB is required for FMO AstC functionality in vivo. FMOs have common catalysis on pyrone-polyene intermediates but different catalytic specificity and efficiency on oxidative intermediates for the selective production of more toxic and complex mycotoxins. Thus, the subtle protein interaction and elaborate versatile catalysis of biosynthetic enzymes contribute to the efficient and selective biosynthesis of these structure-related mycotoxins and provide the basis to re-evaluate and control mycotoxins for agricultural and food safety.


Subject(s)
Mycotoxins , Polyketides , Mycotoxins/chemistry , Polyketides/metabolism , Methyltransferases , Polyketide Synthases/metabolism , Catalysis
6.
Synth Syst Biotechnol ; 7(4): 1013-1023, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35801092

ABSTRACT

Despite numerous studies on transcriptional level regulation by single genes in drug producing Actinomyces, the global regulation based on epigenetic modification is not well explored. N4-methylcytosine (m4C), an abundant epigenetic marker in Actinomycetes' genome, but its regulatory mechanism remains unclear. In this study, we identify a m4C methyltransferase (SroLm3) in Streptomyces roseosporus L30 and multi-omics studies were performed and revealed SroLm3 as a global regulator of secondary metabolism. Notably, three BGCs in ΔsroLm3 strain exhibited decreased expression compared to wild type. In-frame deletion of sroLm3 in S.roseosporus L30 further revealed its role in enhancing daptomycin production. In summary, we characterized a m4C methyltransferase, revealed the function of m4C in secondary metabolism regulation and biosynthesis of red pigment, and mapped a series of novel regulators for daptomycin biosynthesis dominated by m4C methylation. Our research further indicated that m4C DNA methylation may contribute to a metabolic switch from primary to secondary metabolism in Actinomyces.

7.
Eur J Med Chem ; 229: 114067, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34973507

ABSTRACT

Drugs have been largely inspired from natural products, while enzymes underlying their biosynthesis have enabled complex structures and diverse bioactivities. Nevertheless, the high enzyme specificity and limited in vivo precursor types have restricted the natural product reservoir, but Nature has imprinted natural products with active sites, which can be readily modified by chemosynthesis with various functional groups for more favorable druggability. Here in the less exploited fungal natural products, we introduced CtvA, a polyketide synthase for a mycotoxin citreoviridin biosynthesis in Aspergillus, into an endophytic fungus Calcarisporium arbuscula to expand tetrahydrofuran (THF) into a dioxabicyclo-octane (DBO) ring moiety based on versatility and promiscuity of the aurovertin biosynthetic enzyme. Alternative acylations on the hydroxyl groups essential for cell toxicity by chemosynthesis produced compounds with improved anti-tumor activities and pharmacokinetics. Thus, we showed an effective strategic way to optimize the fungal natural product efficiently for more promising drug development.


Subject(s)
Antineoplastic Agents/chemistry , Aurovertins/chemistry , Biological Products/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Octanes/chemistry , Polyketide Synthases/metabolism , Acylation , Antineoplastic Agents/pharmacokinetics , Aspergillus , Biological Products/pharmacokinetics , Cell Proliferation , Furans/chemistry , Humans , Hypocreales , Mycotoxins/metabolism
8.
ACS Synth Biol ; 10(11): 2833-2841, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34734710

ABSTRACT

Efficient enabling technology is required for synthetic biology in Streptomyces due to its natural product reservoir. Though the CRISPR-Cas9 system is powerful for genome editing in this genus, the proposed Cas9 toxicity has limited its application. Here on the basis of previous inducible Cas9 expression at the transcriptional and translational levels coupled with atpD overexpression, a Cas9 cognate inhibitor AcrIIA4 was further introduced to fine-tune the Cas9 activity. In both laboratory and industrial Streptomyces species, we showed that, compared to the constitutively expressed Cas9, incorporating AcrIIA4 increased the conjugation efficiency from 700- to 7000-fold before induction, while a comparable 65%-90% editing efficiency was obtained even on multiple loci for simultaneous deletion after Cas9 expression was induced, along with no significant off-targets. Thus, AcrIIA4 could be a modulator to control Cas9 activity to significantly improve genome editing, and this new toolkit would be widely adaptable and fasten genetic engineering in Streptomyces.


Subject(s)
Bacterial Proteins/genetics , CRISPR-Cas Systems/genetics , Gene Editing/methods , Streptomyces/genetics , Genetic Engineering/methods , RNA, Guide, Kinetoplastida/genetics
9.
J Agric Food Chem ; 69(38): 11303-11310, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34542281

ABSTRACT

Liver fibrosis has accounted for liver diseases and overall mortality, but no relevant drug has been developed. Filamentous fungi are important resources of natural products for pharmaceutical development. Calcarisporium arbuscula is a mushroom endophytic fungus, which primarily produces aurovertins. Here, in an aurovertin null-production mutant, one silent gene cluster (mca17) was activated by overexpression of a pathway-specific zinc finger transcriptional regulator, and a tetramic acid-type compound (1, MCA17-1) was identified. Along with detailed structural characterization, its biosynthesis was proposed to be produced from the core PKS-NRPS hybrid enzyme. Moreover, 1 suppressed the activation of LX-2 upon transforming growth factor-ß (TGF-ß) challenge and had stronger bioactivity than the positive control obeticholic acid (OCA) against liver fibrosis. Our work suggested that this engineered fungus could be a producer of 1 for promising pharmaceutical development, and alternatively, it would be developed as a mushroom ingredient in dietary therapy to prevent liver fibrosis.


Subject(s)
Agaricales , Hypocreales , Agaricales/genetics , Humans , Hypocreales/genetics , Liver Cirrhosis/genetics , Multigene Family
10.
ACS Synth Biol ; 10(4): 698-706, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33720696

ABSTRACT

Fungal natural products are rich sources of clinical drugs. Particularly, the fungicolous fungi have a large number of biosynthetic gene clusters (BGCs) to produce numerous bioactive natural products, but most BGCs are silent in the laboratory. We have shown that a fungicolous fungus Calcarisporiumarbuscula NRRL 3705 predominantly produces the highly reduced polyketide-type mycotoxins aurovertins. Here after evaluation of the aurovertin-null mutant ΔaurA as an efficient host, we further screened two strong promoters aurBp and A07068p based on RNA-Seq, and successfully activated an endogenous gene cluster from C. arbuscula as well as three additional exogenous BGCs from other fungi to produce polyketide-type natural products. Thus, we showed an efficient expression system from the fungicolous fungus C. arbuscula, which will be highly beneficial and complementary to the conventional Aspergillus and Penicillium fungal cell factories, and provides a useful toolkit for genome-wide mining of bioactive natural products from fungicolous fungi.


Subject(s)
Biological Products/metabolism , Hypocreales/metabolism , Aspergillus/genetics , Hypocreales/genetics , Multigene Family/genetics , Multigene Family/physiology , Penicillium/genetics
13.
Biomolecules ; 10(8)2020 07 29.
Article in English | MEDLINE | ID: mdl-32751230

ABSTRACT

Protein post-translational modification (PTM) is a reversible process, which can dynamically regulate the metabolic state of cells through regulation of protein structure, activity, localization or protein-protein interactions. Actinomycetes are present in the soil, air and water, and their life cycle is strongly determined by environmental conditions. The complexity of variable environments urges Actinomycetes to respond quickly to external stimuli. In recent years, advances in identification and quantification of PTMs have led researchers to deepen their understanding of the functions of PTMs in physiology and metabolism, including vegetative growth, sporulation, metabolite synthesis and infectivity. On the other hand, most donor groups for PTMs come from various metabolites, suggesting a complex association network between metabolic states, PTMs and signaling pathways. Here, we review the mechanisms and functions of PTMs identified in Actinomycetes, focusing on phosphorylation, acylation and protein degradation in an attempt to summarize the recent progress of research on PTMs and their important role in bacterial cellular processes.


Subject(s)
Actinobacteria/metabolism , Bacterial Proteins/metabolism , Protein Processing, Post-Translational , Actinobacteria/growth & development , Acylation , Phosphorylation , Proteolysis
14.
J Microbiol Methods ; 176: 106032, 2020 09.
Article in English | MEDLINE | ID: mdl-32805368

ABSTRACT

Tolypocladium ophioglossoides is a rare and valuable fungus extensively used in Chinese medicine for relieving postmenopausal syndrome in women yet its bioactive molecules are unknown. To explore its molecular mechanisms, we have developed a reliable Agrobacterium-mediated transformation system using the selective marker: the chlorimuron ethyl-resistance gene sur. For this purpose, we firstly constructed a T-DNA binary vector system and then improved the transformation efficiency by optimizing conditional parameters including the Agrobacterium tumefaciens concentration, the conidia number of T. ophioglossoides, the co-culture time and the concentration of acetosyringone. Furthermore, we have knocked-out the ku70 gene,which is a key gene in non-homologous end joining (NHEJ) DNA repair pathway,and the effect of the length of the homologous arms (HA) on the genetic transformation efficacy was also examined, which increased by 60% when HA was about 3 kb in length. Our results suggest that the genetic transformation system is efficient and feasible for the truffle-parasite fungus T. ophioglossoides, which can further be used in large-scale experiments for characterization of genes of interest in future work.


Subject(s)
Agrobacterium tumefaciens/genetics , Hypocreales/genetics , Transformation, Genetic , DNA, Bacterial , Genetic Vectors
15.
BMC Genomics ; 21(1): 424, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32580753

ABSTRACT

BACKGROUND: Secondary metabolites as natural products from endophytic fungi are important sources of pharmaceuticals. However, there is currently little understanding of endophytic fungi at the omics levels about their potential in secondary metabolites. Calcarisporium arbuscula, an endophytic fungus from the fruit bodies of Russulaceae, produces a variety of secondary metabolites with anti-cancer, anti-nematode and antibiotic activities. A comprehensive survey of the genome and transcriptome of this endophytic fungus will help to understand its capacity to biosynthesize secondary metabolites and will lay the foundation for the development of this precious resource. RESULTS: In this study, we reported the high-quality genome sequence of C. arbuscula NRRL 3705 based on Single Molecule Real-Time sequencing technology. The genome of this fungus is over 45 Mb in size, larger than other typical filamentous fungi, and comprises 10,001 predicted genes, encoding at least 762 secretory-proteins, 386 carbohydrate-active enzymes and 177 P450 enzymes. 398 virulence factors and 228 genes related to pathogen-host interactions were also predicted in this fungus. Moreover, 65 secondary metabolite biosynthetic gene clusters were revealed, including the gene cluster for the mycotoxin aurovertins. In addition, several gene clusters were predicted to produce mycotoxins, including aflatoxin, alternariol, destruxin, citrinin and isoflavipucine. Notably, two independent gene clusters were shown that are potentially involved in the biosynthesis of alternariol. Furthermore, RNA-Seq assays showed that only expression of the aurovertin gene cluster is much stronger than expression of the housekeeping genes under laboratory conditions, consistent with the observation that aurovertins are the predominant metabolites. Gene expression of the remaining 64 gene clusters for compound backbone biosynthesis was all lower than expression of the housekeeping genes, which partially explained poor production of other secondary metabolites in this fungus. CONCLUSIONS: Our omics data, along with bioinformatics analysis, indicated that C. arbuscula NRRL 3705 contains a large number of biosynthetic gene clusters and has a huge potential to produce a profound number of secondary metabolites. This work also provides the basis for development of endophytic fungi as a new resource of natural products with promising biological activities.


Subject(s)
Fungal Proteins/genetics , Gene Expression Profiling/methods , Hypocreales/genetics , Whole Genome Sequencing/methods , Biosynthetic Pathways , Gene Expression Regulation, Fungal , Genome Size , Genomics , High-Throughput Nucleotide Sequencing , Hypocreales/classification , Hypocreales/metabolism , Phylogeny , Secondary Metabolism , Sequence Analysis, RNA , Single Molecule Imaging
16.
Microb Cell Fact ; 19(1): 99, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32375781

ABSTRACT

BACKGROUND: Large-scale genome reduction has been performed to significantly improve the performance of microbial chassis. Identification of the essential or dispensable genes is pivotal for genome reduction to avoid synthetic lethality. Here, taking Streptomyces as an example, we developed a combinatorial strategy for systematic identification of large and dispensable genomic regions in Streptomyces based on multi-omics approaches. RESULTS: Phylogenetic tree analysis revealed that the model strains including S. coelicolor A3(2), S. albus J1074 and S. avermitilis MA-4680 were preferred reference for comparative analysis of candidate genomes. Multiple genome alignment suggested that the Streptomyces genomes embodied highly conserved core region and variable sub-telomeric regions, and may present symmetric or asymmetric structure. Pan-genome and functional genome analyses showed that most conserved genes responsible for the fundamental functions of cell viability were concentrated in the core region and the vast majority of abundant genes were dispersed in the sub-telomeric regions. These results suggested that large-scale deletion can be performed in sub-telomeric regions to greatly streamline the Streptomyces genomes for developing versatile chassis. CONCLUSIONS: The integrative approach of comparative genomics, functional genomics and pan-genomics can not only be applied to perform a multi-tiered dissection for Streptomyces genomes, but also work as a universal method for systematic analysis of removable regions in other microbial hosts in order to generate more miscellaneous and versatile chassis with minimized genome for drug discovery.


Subject(s)
Genome, Bacterial , Genomics/methods , Streptomyces/genetics , Bacterial Proteins/genetics , Multigene Family , Phylogeny , Sequence Deletion
17.
Commun Biol ; 3(1): 192, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32332843

ABSTRACT

Due to the plethora natural products made by Streptomyces, the regulation of its metabolism are of great interest, whereas there is a lack of detailed understanding of the role of posttranslational modifications (PTM) beyond traditional transcriptional regulation. Herein with Streptomyces roseosporus as a model, we showed that crotonylation is widespread on key enzymes for various metabolic pathways, and sufficient crotonylation in primary metabolism and timely elimination in secondary metabolism are required for proper Streptomyces metabolism. Particularly, the glucose kinase Glk, a keyplayer of carbon catabolite repression (CCR) regulating bacterial metabolism, is identified reversibly crotonylated by the decrotonylase CobB and the crotonyl-transferase Kct1 to negatively control its activity. Furthermore, crotonylation positively regulates CCR for Streptomyces metabolism through modulation of the ratio of glucose uptake/Glk activity and utilization of carbon sources. Thus, our results revealed a regulatory mechanism that crotonylation globally regulates Streptomyces metabolism at least through positive modulation of CCR.


Subject(s)
Bacterial Proteins/metabolism , Carbon/metabolism , Catabolite Repression , Energy Metabolism , Glucokinase/metabolism , Glucose/metabolism , Protein Processing, Post-Translational , Streptomyces/enzymology , Bacterial Proteins/genetics , Glucokinase/genetics , Streptomyces/genetics
18.
World J Microbiol Biotechnol ; 36(1): 13, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31897764

ABSTRACT

Streptomyces is famous for its capability to produce the most abundant antibiotics in all kingdoms. All Streptomyces antibiotics are natural products, whose biosynthesis from the so-called gene clusters are elaborately regulated by pyramidal transcriptional regulatory cascades. In the past decades, scientists have striven to unveil the regulatory mechanisms involved in antibiotic production in Streptomyces. Here we mainly focus on three aspects of the regulation on antibiotic production. 1. The onset of antibiotic production triggered by hormones and their coupled receptors as regulators; 2. The cascades of global and pathway-specific regulators governing antibiotic production; 3. The feedback regulation of antibiotics and/or intermediates on the gene cluster expression for their coordinated production. This review will summarize how the antibiotic production is stringently regulated in Streptomyces based on the signaling, and lay a theoretical foundation for improvement of antibiotic production and potentially drug discovery.


Subject(s)
Anti-Bacterial Agents/metabolism , Gene Regulatory Networks , Streptomyces/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Hormones/metabolism , Multigene Family , Streptomyces/genetics
19.
J Zhejiang Univ Sci B ; 20(12): 983-994, 2019.
Article in English | MEDLINE | ID: mdl-31749345

ABSTRACT

Genome sequencing projects revealed massive cryptic gene clusters encoding the undiscovered secondary metabolites in Streptomyces. To investigate the metabolic products of silent gene clusters in Streptomyces chattanoogensis L10 (CGMCC 2644), we used site-directed mutagenesis to generate ten mutants with point mutations in the highly conserved region of rpsL (encoding the ribosomal protein S12) or rpoB (encoding the RNA polymerase ß-subunit). Among them, L10/RpoB (H437Y) accumulated a dark pigment on a yeast extract-malt extract-glucose (YMG) plate. This was absent in the wild type. After further investigation, a novel angucycline antibiotic named anthrachamycin was isolated and determined using nuclear magnetic resonance (NMR) spectroscopic techniques. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis and electrophoretic mobility shift assay (EMSA) were performed to investigate the mechanism underlying the activation effect on the anthrachamycin biosynthetic gene cluster. This work indicated that the rpoB-specific missense H437Y mutation had activated anthrachamycin biosynthesis in S. chattanoogensis L10. This may be helpful in the investigation of the pleiotropic regulation system in Streptomyces.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Bacterial Proteins/genetics , Streptomyces/metabolism , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Multigene Family , Mutagenesis, Site-Directed , Streptomyces/genetics
20.
Article in English | MEDLINE | ID: mdl-31737622

ABSTRACT

Efficient genome editing is a prerequisite of genetic engineering in synthetic biology, which has been recently achieved by the powerful CRISPR/Cas9 system. However, the toxicity of Cas9, due to its abundant intracellular expression, has impeded its extensive applications. Here we constructed a genetic cassette with triple controls of Cas9 activities at transcriptional, translational and protein levels, together with over-expression of the ATP synthase ß-subunit AtpD, for the efficient genome editing in Streptomyces. By deletion of actII-ORF4 in Streptomyces coelicolor as a model, we found that constitutive expression of cas9 had about 90% editing efficiency but dramatically reduced transformation efficiency by 900-fold. However, triple controls of Cas9 under non-induction conditions to reduce its activity increased transformation efficiency over 250-fold, and had about 10% editing efficiency if combined with atpD overexpression. Overall, our strategy accounts for about 30-fold increased possibility for successful genome editing under the non-induction condition. In addition, about 80% editing efficiency was observed at the actII-ORF4 locus after simultaneous induction with thiostrepton, theophylline and blue light for Cas9 activity reconstitution. This improved straightforward efficient genome editing was also confirmed in another locus redD. Thus, we developed a new strategy for efficient genome editing, and it could be readily and widely adaptable to other Streptomyces species to improve genetic manipulation for rapid strain engineering in Streptomyces synthetic biology, due to the highly conserved genetic cassettes in this genus.

SELECTION OF CITATIONS
SEARCH DETAIL
...