Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 8(6)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35735704

ABSTRACT

Poloxamer is a triblock copolymer with amphiphilicity and reversible thermal responsiveness and has wide application prospects in biomedical applications owing to its multifunctional properties. Poloxamer hydrogels play a crucial role in the field of tissue engineering and have been regarded as injectable scaffolds for loading cells or growth factors (GFs) in the last few years. Hydrogel micelles can maintain the integrity and stability of cells and GFs and form an appropriate vascular network at the application site, thus creating an appropriate microenvironment for cell growth, nerve growth, or bone integration. The injectability and low toxicity of poloxamer hydrogels make them a noninvasive method. In addition, they can also be good candidates for bio-inks, the raw material for three-dimensional (3D) printing. However, the potential of poloxamer hydrogels has not been fully explored owing to the complex biological challenges. In this review, the latest progress and cutting-edge research of poloxamer-based scaffolds in different fields of application such as the bone, vascular, cartilage, skin, nervous system, and organs in tissue engineering and 3D printing are reviewed, and the important roles of poloxamers in tissue engineering scaffolds are discussed in depth.

2.
Tissue Eng Regen Med ; 19(3): 437-450, 2022 06.
Article in English | MEDLINE | ID: mdl-35532735

ABSTRACT

Bone graft materials have mixed effects of bone repair in the field of oral maxillofacial surgery. The qualitative analyses performed by previous studies imply that autogenous odontogenic materials and autogenous bone have similar effects on bone repair in clinical jaw bone transplantation. This retrospective systematic assessment and network meta-analysis aimed to analyze the best effect of clinical application of autogenous odontogenic materials and autogenous, allogeneic, and xenogeneic bone grafts in bone defect repair. A systematic review was performed by searching the PubMed, Cochrane Library, and other journal databases using selected keywords and Medical Subject Headings search terms. 10 Papers (n = 466) that met the inclusion criteria were selected. The assessment of heterogeneity did not reveal any overall statistical difference or heterogeneity (P = 0.051 > 0.05), whereas the comparison between autogenous and allogeneic bone grafts revealed local heterogeneity (P = 0.071 < 0.1). Risk of bias revealed nine unclear studies and one high-risk study. The overall consistency was good (P = 0.065 > 0.05), and the local inconsistency test did not reveal any inconsistency. The publication bias was good. The confidence regarding the ranking of bone graft materials after GRADE classification was moderate. The effects on bone repair in the descending order were as follows: autogenous odontogenic materials, xenogeneic bone, autogenous bone, and allogeneic bone. This result indicates that the autogenous odontogenic materials displayed stronger effects on bone repair compared to other bone graft materials. Autogenous odontogenic materials have broad development prospects in oral maxillofacial surgery.


Subject(s)
Bone Transplantation , Facial Bones , Animals , Facial Bones/transplantation , Humans , Network Meta-Analysis , Retrospective Studies , Transplantation, Heterologous
3.
Materials (Basel) ; 15(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35160743

ABSTRACT

Owing to the limitations of traditional systemic drug delivery in the treatment of bone diseases with side effects on normal cells, the selection of materials with high affinities for bones, as targeting ligands to modify drug carriers, has become an important research topic. Tetracyclines (TCs) have an adsorption effect on hydroxyapatite (HAp). Thus, they can be used as bone-targeting ligands and combined with drug carriers. In this study, density functional theory is used to analyze the interaction mechanism of TC, oxytetracycline (OTC), chlortetracycline, and HAp. We calculate the electrostatic potential (ESP) and molecular orbitals to predict the possible binding sites of TCs on the HAp surface. The adsorption energy is used to compare the affinities of the three TCs to HAp. An independent gradient model analysis is performed to study the weak interaction between TCs and HAp. The coordination bond between TCs and the HAp surface is evaluated by conducting a charge density difference analysis. The results show that OTC has the highest affinity to HAp because the introduction of hydroxyl groups change the adsorption configuration of OTC. Thus, OTC adsorbed on HAp in a broken-line shape exposes more binding sites. This study provides a theoretical basis for TCs as bone-targeting ligands in treating bone diseases and in improving the safety of treatment by selecting different bone-targeting ligands.

SELECTION OF CITATIONS
SEARCH DETAIL
...