Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 15: 1345380, 2024.
Article in English | MEDLINE | ID: mdl-38751789

ABSTRACT

Periprosthetic osteolysis (PPO) is the most common cause of joint arthroplasty failure. Its progression involves both biological and mechanical factors. Osteoclastogenesis induced by wear from debris-cell interactions, ultimately leading to excessive bone erosion, is considered the primary cause of PPO; therefore, targeting osteoclasts is a promising treatment approach. Currently available drugs have various side effects and limitations. Artemisinic acid (ArA) is a sesquiterpene isolated from the traditional herb Artemisia annua L. that has various pharmacological effects, such as antimalarial, anti-inflammatory, and antioxidant activities. Therefore, this study was aimed at investigating the effect of ArA on osteoclast formation and bone resorption function in vitro, as well as wear particle-induced osteolysis in vivo, and to explore its molecular mechanism of action. Here, we report that ArA inhibits RANKL-stimulated osteoclast formation and function. Mechanistically, ArA suppresses intracellular reactive oxygen species levels by activating the antioxidant response via nuclear factor erythroid-2-related factor 2 (Nrf2) pathway upregulation. It also inhibits the mitogen-activated kinases (MAPK) and nuclear factor-κB (NF-κB) pathways, as well as the transcription and expression of NFATc1 and c-Fos. In vivo experiments demonstrated that ArA reduces osteoclast formation and alleviates titanium particle-induced calvarial osteolysis. Collectively, our study highlights that ArA, with its osteoprotective and antioxidant effects, is a promising therapeutic agent for preventing and treating PPO and other osteoclast-mediated osteolytic diseases.

2.
Nat Commun ; 15(1): 3426, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654020

ABSTRACT

Single-walled carbon nanotubes (SWCNTs)-based thermoelectric materials, valued for their flexibility, lightweight, and cost-effectiveness, show promise for wearable thermoelectric devices. However, their thermoelectric performance requires significant enhancement for practical applications. To achieve this goal, in this work, we introduce rational "triple treatments" to improve the overall performance of flexible SWCNT-based films, achieving a high power factor of 20.29 µW cm-1 K-2 at room temperature. Ultrasonic dispersion enhances the conductivity, NaBH4 treatment reduces defects and enhances the Seebeck coefficient, and cold pressing significantly densifies the SWCNT films while preserving the high Seebeck coefficient. Also, bending tests confirm structural stability and exceptional flexibility, and a six-legged flexible device demonstrates a maximum power density of 2996 µW cm-2 at a 40 K temperature difference, showing great application potential. This advancement positions SWCNT films as promising flexible thermoelectric materials, providing insights into high-performance carbon-based thermoelectrics.

3.
Orthop Surg ; 16(5): 1101-1108, 2024 May.
Article in English | MEDLINE | ID: mdl-38509013

ABSTRACT

BACKGROUND: Preoperative evaluation of femoral anteversion to predict postoperative stem anteversion aids the selection of an appropriate prosthesis and optimizes the combined anteversion in total hip arthroplasty (THA) for developmental dysplasia of the hip (DDH). The conventional prediction methods are based on the femoral anteversion measurement at the location of the femoral head and/or neck. However, varied differences between femoral anteversion and postoperative stem anteversion were demonstrated. This study investigated the predictive role of a new method based on the principle of sagittal three-point fixation. METHODS: From January 2017 to December 2018, a total of 133 DDH hips that underwent THA were retrospectively analyzed. There were 76 Crowe type I, 27 type II, and 30 type III hips. The single-wedge stem was used in 49 hips, and the double-wedge stem was used in 84 hips. Preoperative native femoral anteversion at the femoral head-neck junction, anterior cortex anteversion at 2 levels of the lesser trochanter, posterior cortex anteversion at 5 levels of the femoral neck, and postoperative stem anteversion were measured using two-dimensional computed tomography. Predictive anteversion by the new method was calculated as the average anteversion formed by the anterior cortex at the lesser trochanter and the posterior cortex at the femoral neck. RESULTS: For hips with different neck heights, different Crowe types, different stem types, or different femoral anteversions, native femoral anteversion showed widely varied differences and correlations with stem anteversion, with differences ranging from -1.27 ± 8.33° to -13.67 ± 9.47° and correlations ranging from 0.122 (p = 0.705, no correlation) to 0.813. Predictive anteversion formed by the anterior cortex at the lesser trochanter proximal base and posterior cortex 10 mm above the lesser trochanter proximal base showed no significant difference with stem anteversion, with less varied differences (0.92 ± 7.52°) and good to excellent correlations (r = 0.826). CONCLUSION: Adopting our new method, predictive anteversion, measured as the average anteversion of the anterior cortex at the lesser trochanter proximal base and posterior cortex 10 mm above the lesser trochanter proximal base, predicted postoperative stem anteversion more reliably than native femoral anteversion.


Subject(s)
Arthroplasty, Replacement, Hip , Developmental Dysplasia of the Hip , Hip Prosthesis , Humans , Arthroplasty, Replacement, Hip/methods , Female , Male , Retrospective Studies , Middle Aged , Developmental Dysplasia of the Hip/surgery , Developmental Dysplasia of the Hip/diagnostic imaging , Aged , Adult , Tomography, X-Ray Computed , Prosthesis Design
4.
ACS Nano ; 18(2): 1678-1689, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38164927

ABSTRACT

Incorporating donor doping into Mg3Sb1.5Bi0.5 to achieve n-type conductivity is one of the crucial strategies for performance enhancement. In pursuit of higher thermoelectric performance, we herein report co-doping with Te and Y to optimize the thermoelectric properties of Mg3Sb1.5Bi0.5, achieving a peak ZT exceeding 1.7 at 703 K in Y0.01Mg3.19Sb1.5Bi0.47Te0.03. Guided by first-principles calculations for compositional design, we find that Te-doping shifts the Fermi level into the conduction band, resulting in n-type semiconductor behavior, while Y-doping further shifts the Fermi level into the conduction band and reduces the bandgap, leading to enhanced thermoelectric performance with a power factor as high as >20 µW cm-1 K-2. Additionally, through detailed micro/nanostructure characterizations, we discover that Te and Y co-doping induces dense crystal and lattice defects, including local lattice distortions and strains caused by point defects, and densely distributed grain boundaries between nanocrystalline domains. These defects efficiently scatter phonons of various wavelengths, resulting in a low thermal conductivity of 0.83 W m-1 K-1 and ultimately achieving a high ZT. Furthermore, the dense lattice defects induced by co-doping can further strengthen the mechanical performance, which is crucial for its service in devices. This work provides guidance for the composition and structure design of thermoelectric materials.

5.
J Am Chem Soc ; 146(2): 1681-1689, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38178655

ABSTRACT

The coupled relationship between carrier and phonon scattering severely limits the thermoelectric performance of n-type GeTe materials. Here, we provide an efficient strategy to enlarge grains and induce vacancy clusters for decoupling carrier-phonon scattering through the annealing optimization of n-type GeTe-based materials. Specifically, boundary migration is used to enlarge grains by optimizing the annealing time, while vacancy clusters are induced through the aggregation of Ge vacancies during annealing. Such enlarged grains can weaken carrier scattering, while vacancy clusters can strengthen phonon scattering, leading to decoupled carrier-phonon scattering. As a result, a ratio between carrier mobility and lattice thermal conductivity of ∼492.8 cm3 V-1 s-1 W-1 K and a peak ZT of ∼0.4 at 473 K are achieved in Ge0.67Pb0.13Bi0.2Te. This work reveals the critical roles of enlarged grains and induced vacancy clusters in decoupling carrier-phonon scattering and demonstrates the viability of fabricating high-performance n-type GeTe materials via annealing optimization.

6.
Adv Healthc Mater ; 12(30): e2301798, 2023 12.
Article in English | MEDLINE | ID: mdl-37667873

ABSTRACT

Cell senescence or apoptosis contributes to self-failure and functional loss in specialized cells, leading to incapacity of the body to repair specific damages. Senescent bone marrow mesenchymal stem cells (BMSCs) lose their proliferative abilities and secrete senescence-associated secretory phenotype (SASP), hindering their participation in bone defect repair. Hence, the effective suppression of cell senescence is crucial to restore the self-repair capacity of body to treat bone defects. Since the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway is associated with SASP secretion, herein, a new strategy is proposed to inhibit this pathway to suppress SASP secretion and enhance osteoblast activity based on a novel hierarchically biomimetic nanostructural electrospun scaffold with JAK inhibitors (JAKi, Ruxolitinib) loaded. As validated by in vitro and in vivo experiments, the JAKi loaded scaffold reduces SASP expression effectively and alleviates senescent cell burden, creating a pro-regeneration microenvironment that enhances osteoblast function and mineralization activity as well as rejuvenating the bone repair capacity. These findings offer insights into the regulatory role of cellular senescence in bone aging and provide a new and effective strategy to treat age-related bone defects by delivery of JAKi to locally aging bone defect sites.


Subject(s)
Janus Kinase Inhibitors , Janus Kinase Inhibitors/pharmacology , Tissue Engineering , Biomimetics , Cellular Senescence/genetics , Bone and Bones
7.
Aging (Albany NY) ; 15(8): 2970-2998, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37053008

ABSTRACT

The Ubiquitin-proteasome system (UPS) performs a crucial role in immune activation and tumorigenesis. Nevertheless, the comprehensive role of the ubiquitin-proteasome system in the low-grade glioma (LGG) tumor microenvironment (TME) remains unknown. Ubiquitination modification patterns in LGG patients and corresponding characteristics of tumor immune traits, CSC stemness, and cellular senescence were evaluated via a comprehensive analysis of 20 ubiquitination modification regulators. For quantification of the ubiquitination modification status of individual patients, the UM-score was constructed and associated with TME characteristics, clinical features, cancer stem cell stemness, cellular senescence, prognosis, and immunotherapy efficacy. We identified that alterations in multiple ubiquitination regulators are linked to patient survival and the shaping of the tumor microenvironment. We found two different styles of ubiquitination modification in patients with low-grade glioma (immune-inflamed differentiation and immune-exclude dedifferentiation), characterized by high and low UM-score, and the two regulatory patterns of ubiquitination modification on immunity, stemness feature, and cellular senescence. We demonstrate that the UM-score could forecast the subtype of LGG, the immunologic infiltration traits, the biological process, the stemness feature, and the cellular senescence trait. Notably, the UM-score was related to immunotherapeutic efficacy, implying that modifying ubiquitination modification patterns by targeting ubiquitination modification regulators or ubiquitination modification pattern signature genes to reverse unfavorable TME properties will provide new insights into cancer immunotherapy. This research indicated that the ubiquitin-proteasome system is crucial in the formation of TME complexity and multiformity. The UM-score can determine ubiquitination modification status in individual patients, bringing about more personalized and effective immunotherapeutic tactics.


Subject(s)
Glioma , Proteasome Endopeptidase Complex , Humans , Ubiquitin , Tumor Microenvironment , Ubiquitination , Glioma/therapy , Cellular Senescence , Prognosis
8.
Adv Sci (Weinh) ; 10(12): e2205059, 2023 04.
Article in English | MEDLINE | ID: mdl-36755334

ABSTRACT

Tissue engineering is theoretically thought to be a promising method for the reconstruction of biological joints, and thus, offers a potential treatment alternative for advanced osteoarthritis. However, to date, no significant progress is made in the regeneration of large biological joints. In the current study, a biomimetic scaffold for rabbit humeral head regeneration consisting of heterogeneous porous architecture, various bioinks, and different hard supporting materials in the cartilage and bone regions is designed and fabricated in one step using 3D bioprinting technology. Furthermore, orchestrated dynamic mechanical stimulus combined with different biochemical cues (parathyroid hormone [PTH] and chemical component hydroxyapatite [HA] in the outer and inner region, respectively) are used for dual regulation of endochondral ossification. Specifically, dynamic mechanical stimulus combined with growth factor PTH in the outer region inhibits endochondral ossification and results in cartilage regeneration, whereas dynamic mechanical stimulus combined with HA in the inner region promotes endochondral ossification and results in efficient subchondral bone regeneration. The strategy established in this study with the dual modulation of endochondral ossification for 3D bioprinted anisotropic scaffolds represents a versatile and scalable approach for repairing large joints.


Subject(s)
Humeral Head , Osteogenesis , Animals , Rabbits , Osteogenesis/physiology , Cartilage , Tissue Engineering/methods , Bone and Bones
9.
Adv Healthc Mater ; 12(6): e2202467, 2023 01.
Article in English | MEDLINE | ID: mdl-36377480

ABSTRACT

Lacking blood vessels is one of the main characteristics of most solid tumors due to their rapid and unrestricted growth, which thus causes the inefficient delivery efficiency of nanomedicine and tumor hypoxia. Herein, a dual "unlocking" strategy to overcome these obstacles is proposed by combining engineered hybrid nanoparticles (named ZnPc@FOM-Pt) with dexamethasone (DXM). It is verified that pretreatment of tumors with DXM can increase intratumorally micro-vessel density (delivery "unlocking") to enhance the tumor delivery efficiency of ZnPc@FOM-Pt and decrease HIF-1α expression. Correspondingly, more Pt can catalyze tumor-overexpressed H2 O2 to produce oxygen to further cause hypoxia "unlocking," ultimately achieving boosted ZnPc-based photodynamic therapy in vivo (tumor inhibition rate: 99.1%). Moreover, the immunosuppressive tumor microenvironment is efficiently reversed and the therapeutic effect of anti-PD-L1-based immunotherapy is promoted by this newly designed nanomedicine. This dual "unlocking" strategy provides an innovative paradigm on simultaneously enhancing nanomedicine delivery efficacy and hypoxia relief for tumor therapy.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Nanomedicine , Tumor Hypoxia , Neoplasms/drug therapy , Hypoxia/drug therapy , Immunotherapy , Cell Line, Tumor , Tumor Microenvironment
10.
Orthop Surg ; 14(12): 3277-3282, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36268676

ABSTRACT

OBJECTIVE: The oscillating saw has some inherent disadvantages, such as notch formation and blood splash. The objective is to introduce the Gigli saw as a substitute osteotomy tool when oscillating saw malfunctions occur during surgery. METHODS: During our retrospective study, 120 patients (120 hips) who underwent primary total hip arthroplasty (THA) because of femoral neck fracture, femoral head necrosis, developmental hip dysplasia (Crowe I), or primary osteoarthritis between October 2017 and April 2020 at our institute were included. Sixty patients (26 men and 34 women) with a mean age of 67.3 years (±15.1 years) underwent femoral neck osteotomy using a Gigli saw. The other 60 patients (32 men and 28 women) with a mean age of 64.4 years (±18.8 years) underwent femoral neck osteotomy using an oscillating saw. Intraoperative evaluations, including osteotomy time, osteotomy height, number of notch formations, and blood splash generation, were performed. Routine anteroposterior views of the pelvis and proximal femur were obtained for all patients after surgery. RESULTS: The mean osteotomy times were 26.60 ± 14.80 s and 31.80 ± 14.20 s with the oscillating saw and Gigli saw, respectively (t = 1.964, P = 0.0519). The mean osteotomy heights were 1.26 ± 0.22 cm and 1.20 ± 0.14 cm with the oscillating saw and Gigli saw, respectively (t = 1.782, P = 0.0773). The use of a Gigli saw did not result in bone notch formation or blood splash generation when multiple blood splashes were generated in the oscillating saw group. Postoperative radiographs showed no prostheses malposition in the Gigli saw and oscillating saw groups. CONCLUSION: The Gigli saw has various advantages and can be a substitute tool for femoral neck osteotomy during THA when oscillating saw malfunctions occur.


Subject(s)
Arthroplasty, Replacement, Hip , Humans , Female , Aged , Middle Aged , Retrospective Studies
11.
Biomater Sci ; 10(15): 4208-4217, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35734909

ABSTRACT

Reactive oxygen species (ROS) based nanoplatforms have been considered as attractive and feasible candidates for cancer therapy. However, the activated endogenous antioxidant defense of cancer cells in response to the ROS attack greatly hinders their therapeutic efficacy. Although cancer-specific ROS amplification strategies have been widely explored, most of them suffer from tedious synthesis procedures and complex components, which will bring about undesired side effects and unsatisfactory results. Herein, we design a cancer-specific oxidative stress amplification nanomedicine (CA-Cu-PDA), which is simply fabricated through integrating the glutathione (GSH) responsive/depleting nanocarrier of copper-polydopamine (Cu-PDA) nanoparticles with a ROS-generating drug cinnamaldehyde (CA) via a facile one-pot polymerization route. It is verified that GSH could trigger the breakage of CA-Cu-PDA networks and the subsequent release of both copper ions and CA in cancer cells. The released copper ions efficiently oxidize GSH, thereby weakening the antioxidant system of cancer cells and increasing the ROS levels. On the other hand, extra ROS are generated by the reduced copper ions through a Fenton reaction, so that a synergistic ROS therapy with CA is achieved. Consequently, oxidative stress is specifically increased within cancer cells, leading to efficient cancer cell apoptosis, significant tumor suppression and minimized side effects. Such an ingenious structure realizes the interlocking cooperation and full utilization of each component's function, presenting promising perspectives for nanomedicine design.


Subject(s)
Nanoparticles , Neoplasms , Antioxidants , Cell Line, Tumor , Copper/therapeutic use , Glutathione , Humans , Indoles , Ions , Nanoparticles/chemistry , Neoplasms/drug therapy , Polymers , Reactive Oxygen Species
12.
Mater Today Bio ; 15: 100277, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35601894

ABSTRACT

Current treatments of osteoarthritis, such as oral medication and intra-articular injections, only provided temporary relief from pain and achieved limited advance in inhibiting progression. The development of new treatments is hindered by the complicated and unclear pathological mechanisms. Oxidative stress and immune inflammation are believed to be the important factors in the induction and progression of osteoarthritis. Herein, this work presents a bioactive material strategy to treat osteoarthritis, based on the FPSOH matrixgel with robust anti-inflammatory activity through inhibiting the oxidative stress and nuclear factor kappa B signaling, preventing the metalloproteinase, as well as inducing M2 polarization of macrophage, thereby providing immune regulation of synovial macrophages and suppressing the progression of synovitis and osteoarthritis. In vivo experiments demonstrated that FPSOH hydrogel can prevent papain-induced osteoarthritis and its progression, and provide dual protection for cartilage and synovium, as compared with commercial sodium hyaluronate.

13.
BMC Musculoskelet Disord ; 23(1): 437, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35546655

ABSTRACT

BACKGROUND: Mechanical failure, power shortage, and inadvertent contamination of the oscillating saw occasionally occurs in actualizing femoral neck osteotomy during total hip arthroplasty (THA); however, no appropriate alternative solution is currently available. This study aimed to introduce a novel osteotomy instrumentation (fretsaw, jig, cable passer hook) as a substitute tool while the oscillating saw was unavailable during THA. METHODS: This study included 40 patients (40 hips) who underwent femoral neck osteotomy during primary THA using the new osteotomy instrumentation (n = 20) and the oscillating saw (n = 20). Clinical data and intraoperative findings of all patients were evaluated. RESULTS: The mean osteotomy time was 22.3 ± 3.1 s (range, 17-30 s) and 29.4 ± 3.7 s (range, 25-39 s) in the oscillating saw group and in the new osteotomy instrumentation group, respectively (P < 0.001). The Harris Hip Score (HHS) improved in both groups; the mean HSS was 82.3 ± 2.5 and 83.3 ± 3.5 in the oscillating saw group and new osteotomy instrumentation group at 6 months after surgery, respectively (P = 0.297). CONCLUSIONS: The original osteotomy instrumentation can be an ideal substitute tool for femoral neck osteotomy in THA, especially when the oscillating saw is unavailable or malfunctioning.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Dislocation, Congenital , Arthroplasty, Replacement, Hip/adverse effects , Femur/surgery , Femur Neck/diagnostic imaging , Femur Neck/surgery , Hip Dislocation, Congenital/surgery , Humans , Osteotomy , Retrospective Studies , Treatment Outcome
14.
BMC Musculoskelet Disord ; 23(1): 432, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35534887

ABSTRACT

BACKGROUND: Accurate assessment of acetabular defects and designing precise and feasible surgical plans are essential for positive outcomes of hip revision arthroplasty. Additive manufacturing (AM) is a novel technique to print physical object models. We propose a three-dimensional acetabular bone defect classification system aided with AM model, and further assess its reliability and validity under blinded conditions. METHODS: We reviewed 104 consecutive patients who underwent hip revision arthroplasty at our department between January 2014 and December 2019, of whom 45 had AM models and were included in the reliability and validity tests. Three orthopedic surgeons retrospectively evaluated the bone defects of these 45 patients with our proposed classification, made surgical plans, and repeated the process after 2 weeks. The reliability and validity of the classification results and corresponding surgical plans were assessed using the intra-class correlation coefficient or kappa correlation coefficient. RESULTS: The reliability and validity of the classification results were excellent. The mean initial intra-class correlation coefficient for inter-observer reliability was 0.947, which increased to 0.972 when tested a second time. The intra-observer reliability ranged from 0.958 to 0.980. Validity of the classification results also showed a high kappa correlation coefficient of 0.951-0.967. When considering corresponding surgical plans, the reliability and validity were also excellent, with intra-class correlation coefficients and kappa correlation coefficients measuring all over 0.9. CONCLUSIONS: This three-dimensional acetabular defect classification has excellent reliability and validity. Using this classification system and AM models, accurate assessment of bone defect and reliable surgical plans could be achieved. This classification aided with AM is a promising tool for surgeons for preoperative evaluation.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Acetabulum/diagnostic imaging , Acetabulum/surgery , Arthroplasty, Replacement, Hip/methods , Humans , Observer Variation , Reoperation , Reproducibility of Results , Retrospective Studies
15.
Calcif Tissue Int ; 111(2): 211-223, 2022 08.
Article in English | MEDLINE | ID: mdl-35588014

ABSTRACT

Aseptic loosening of the prosthesis caused by wear-particle-induced osteolysis is a long-term complication and one of the most common reasons for the failure of joint implants. The primary cause of aseptic loosening of the prosthesis is overactive bone resorption caused by wear-particle-activated osteoclasts in both direct and indirect ways. Therefore, drugs that can inhibit differentiation and bone resorption of osteoclasts need investigation as a potential therapeutic strategy to prevent and treat peri-prosthetic osteolysis and thereby prolong the service life of the prosthesis. This study has verified the potential inhibitory effect of LY450139 on inflammatory osteolysis induced by titanium particles in a mice skull model. In addition, we found that LY450139 inhibited receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis, bone resorption, and podosomal actin belt formation in a dose-dependent manner without evidence of cytotoxicity in vitro. In addition, LY450139 significantly decreased the expression of osteoclast-specific markers, including TRAP, CTSK, V-ATPase d2, CTR, DC-STAMP, NFATc1, and the downstream target gene Hes1 in Notch signaling pathway. Further investigation of the molecular mechanism demonstrated that LY450139 inhibited the formation of osteoclasts via inhibition of the NF-κB and Notch signaling pathways. In summary, LY450139 inhibited the formation of RANKL-mediated osteoclasts via NF-κB and Notch signaling and inhibited Ti particle-induced inflammatory osteolysis in vivo. LY450139 is a potential targeted drug for the treatment of peri-prosthetic osteolysis and other osteolytic disease associated with overactive osteoclasts.


Subject(s)
Bone Resorption , Osteolysis , Alanine/analogs & derivatives , Animals , Azepines , Bone Resorption/chemically induced , Disease Models, Animal , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Osteoclasts/metabolism , Osteogenesis , Osteolysis/drug therapy , RANK Ligand/metabolism , Signal Transduction , Solubility , Titanium/adverse effects
16.
Biofabrication ; 14(3)2022 04 22.
Article in English | MEDLINE | ID: mdl-35417902

ABSTRACT

The integration of three-dimensional (3D) bioprinted scaffold's structure and function for critical-size bone defect repair is of immense significance. Inspired by the basic component of innate cortical bone tissue-osteons, many studies focus on biomimetic strategy. However, the complexity of hierarchical microchannels in the osteon, the requirement of mechanical strength of bone, and the biological function of angiogenesis and osteogenesis remain challenges in the fabrication of osteon-mimetic scaffolds. Therefore, we successfully built mimetic scaffolds with vertically central medullary canals, peripheral Haversian canals, and transverse Volkmann canals structures simultaneously by 3D bioprinting technology using polycaprolactone and bioink loading with bone marrow mesenchymal stem cells and bone morphogenetic protein-4. Subsequently, endothelial progenitor cells were seeded into the canals to enhance angiogenesis. The porosity and compressive properties of bioprinted scaffolds could be well controlled by altering the structure and canal numbers of the scaffolds. The osteon-mimetic scaffolds showed satisfactory biocompatibility and promotion of angiogenesis and osteogenesisin vitroand prompted the new blood vessels and new bone formationin vivo. In summary, this study proposes a biomimetic strategy for fabricating structured and functionalized 3D bioprinted scaffolds for vascularized bone tissue regeneration.


Subject(s)
Bioprinting , Biomimetics , Bioprinting/methods , Bone Regeneration , Haversian System , Osteogenesis , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds/chemistry
17.
J Arthroplasty ; 37(3): 538-543, 2022 03.
Article in English | MEDLINE | ID: mdl-34923094

ABSTRACT

BACKGROUND: This study aimed to explore the anatomical correlation between the femoral neck shaft angle (NSA) and femoral anteversion angle (AA) in patients with developmental dysplasia of the hip based on the Crowe classification and provide a novel method to estimate the femoral AA on anteroposterior pelvic radiographs. METHODS: A total of 208 patients with dysplastic hips who underwent total hip arthroplasty at our institution were retrospectively included. Preoperative physiological AA and NSA were determined via 3-dimensional computed tomography. Linear regressions and Pearson's coefficients were calculated to assess the correlation between the femoral NSA and femoral AA. RESULTS: A total of 416 hips were divided into 5 subgroups: 99 normal, 143 type I, 71 type II, 63 type III, and 40 type IV hips following the Crowe classification. Dysplastic femurs had significantly higher AAs than normal hips (25.2° vs 31.4° vs 33.3° vs 35.5° vs 41.7°). Significant positive correlations between the AA and NSA were observed in normal (r = 0.635), type I (r = 0.700), type II (r = 0.612), and type III (r = 0.638) hips (P < .001); however, no meaningful correlation was observed in type IV hips (r = 0.218, P = .176). CONCLUSION: The NSA and AA correlated positively and significantly in the normal and dysplastic Crowe type I-III hips. The relationship between the NSA and AA indicates torsion of the proximal femur and offers an opportunity for straightforward estimation of AA based on NSA.


Subject(s)
Developmental Dysplasia of the Hip , Hip Dislocation, Congenital , Femur/diagnostic imaging , Femur/surgery , Femur Neck/diagnostic imaging , Femur Neck/surgery , Hip Dislocation, Congenital/diagnostic imaging , Hip Dislocation, Congenital/surgery , Humans , Retrospective Studies , Tomography, X-Ray Computed
18.
Ann Transl Med ; 9(17): 1366, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34733918

ABSTRACT

BACKGROUND: Total hip arthroplasty (THA) is frequently performed in patients with end-stage hip disease. Periacetabular osteophytes are common during THA; however, these osteophytes should be removed intraoperatively to avoid potential impingement between osteophytes and femoral prostheses and decrease dislocation risk. There are no current standard procedures or surgical technique criteria to remove these osteophytes. Osteophytes around the acetabulum are usually removed with an osteotome, yet this presents certain disadvantages. Hence, this study aimed to introduce a novel and more efficient technique than the aforementioned one, the SH-9Hospital acetabular edge file. METHODS: Fifty-four patients (54 hips) who underwent primary THA using osteotome and the SH-9Hospital acetabular edge file to remove periacetabular osteophytes intraoperatively were retrospectively studied. Clinical and radiographic data were obtained for all patients intra- and postoperatively. RESULTS: The mean osteophyte removal time was 274.6±102.7 s and 51.3±21.1 s in the osteotome and SH-9Hospital acetabular edge file groups, respectively. Intraoperative images and postoperative radiographs showed that acetabular osteophytes were removed thoroughly and precisely by the acetabular edge file and that there was no iatrogenic injury and prostheses malposition in both groups. CONCLUSIONS: The SH-9Hospital acetabular edge file was a novel, efficient, highly precise, and repeatable method for removing periacetabular osteophytes in patients undergoing total hip arthroplasty.

19.
J Nanobiotechnology ; 19(1): 298, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34592996

ABSTRACT

BACKGROUND: Hypoxia is a characteristic of solid tumors that can lead to tumor angiogenesis and early metastasis, and addressing hypoxia presents tremendous challenges. In this work, a nanomedicine based on oxygen-absorbing perfluorotributylamine (PFA) and the bioreductive prodrug tirapazamine (TPZ) was prepared by using a polydopamine (PDA)-coated UiO-66 metal organic framework (MOF) as the drug carrier. RESULTS: The results showed that TPZ/PFA@UiO-66@PDA nanoparticles significantly enhanced hypoxia, induced cell apoptosis in vitro through the oxygen-dependent HIF-1α pathway and decreased oxygen levels in vivo after intratumoral injection. In addition, our study demonstrated that TPZ/PFA@UiO-66@PDA nanoparticles can accumulate in the tumor region after tail vein injection and effectively inhibit tumor growth when combined with photothermal therapy (PTT). TPZ/PFA@UiO-66@PDA nanoparticles increased HIF-1α expression while did not promote the expression of CD31 in vivo during the experiment. CONCLUSIONS: By using TPZ and PFA and the enhanced permeability and retention effect of nanoparticles, TPZ/PFA@UiO-66@PDA can target tumor tissues, enhance hypoxia in the tumor microenvironment, and activate TPZ. Combined with PTT, the growth of osteosarcoma xenografts can be effectively inhibited.


Subject(s)
Fluorocarbons , Metal-Organic Frameworks , Osteosarcoma/metabolism , Phthalic Acids , Tirapazamine , Tumor Hypoxia , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Humans , Indoles/chemistry , Indoles/pharmacology , Male , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Mice , Mice, Nude , Nanoparticles/chemistry , Nanoparticles/toxicity , Phthalic Acids/chemistry , Phthalic Acids/pharmacology , Polymers/chemistry , Polymers/pharmacology , Tirapazamine/chemistry , Tirapazamine/pharmacology
20.
Biomed Res Int ; 2021: 4910816, 2021.
Article in English | MEDLINE | ID: mdl-34552987

ABSTRACT

Three-dimensional (3D) bioprinting is a revolutionary technology that replicates 3D functional living tissue scaffolds in vitro by controlling the layer-by-layer deposition of biomaterials and enables highly precise positioning of cells. With the development of this technology, more advanced research on the mechanisms of tissue morphogenesis, clinical drug screening, and organ regeneration may be pursued. Because of their self-renewal characteristics and multidirectional differentiation potential, induced pluripotent stem cells (iPSCs) have outstanding advantages in stem cell research and applications. In this review, we discuss the advantages of different bioinks containing human iPSCs that are fabricated by using 3D bioprinting. In particular, we focus on the ability of these bioinks to support iPSCs and promote their proliferation and differentiation. In addition, we summarize the applications of 3D bioprinting with iPSC-containing bioinks and put forward new views on the current research status.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Printing, Three-Dimensional , Tissue Scaffolds/chemistry , Animals , Biocompatible Materials/pharmacology , Humans , Immunophenotyping , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...