Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(11): e202319896, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38197522

ABSTRACT

Upgrading of polyethylene terephthalate (PET) waste into valuable oxygenated molecules is a fascinating process, yet it remains challenging. Herein, we developed a two-step strategy involving methanolysis of PET to dimethyl terephthalate (DMT), followed by hydrogenation of DMT to produce the high-valued chemical methyl p-methyl benzoate (MMB) using a fixed-bed reactor and a Cu/ZrO2 catalyst. Interestingly, we discovered the phase structure of ZrO2 significantly regulates the selectivity of products. Cu supported on monoclinic ZrO2 (5 %Cu/m-ZrO2 ) exhibits an exceptional selectivity of 86 % for conversion of DMT to MMB, while Cu supported on tetragonal ZrO2 (5 %Cu/t-ZrO2 ) predominantly produces p-xylene (PX) with selectivity of 75 %. The superior selectivity of MMB over Cu/m-ZrO2 can be attributed to the weaker acid sites present on m-ZrO2 compared to t-ZrO2 . This weak acidity of m-ZrO2 leads to a moderate adsorption capability of MMB, and facilitating its desorption. Furthermore, DFT calculations reveal Cu/m-ZrO2 catalyst shows a higher effective energy barrier for cleavage of second C-O bond compared to Cu/t-ZrO2 catalyst; this distinction ensures the high selectivity of MMB. This catalyst not only presents an approach for upgrading of PET waste into fine chemicals but also offers a strategy for controlling the primary product in a multistep hydrogenation reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...