Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(4)2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36839003

ABSTRACT

The synthesis of methanol and dimethyl ether (DME) from carbon dioxide (CO2) and green hydrogen (H2) offers a sustainable pathway to convert CO2 emissions into value-added products. This heterogeneous catalytic reaction often uses copper (Cu) catalysts due to their low cost compared with their noble metal analogs. Nevertheless, improving the activity and selectivity of these Cu catalysts for these products is highly desirable. In the present study, a new architecture of Cu- and Cu/Zn-based catalysts supported on electrospun alumina nanofibers were synthesized. The catalysts were tested under various reaction conditions using high-throughput equipment to highlight the role of the hierarchical fibrous structure on the reaction activity and selectivity. The Cu or Cu/ZnO formed a unique structure of nanosheets, covering the alumina fiber surface. This exceptional morphology provides a large surface area, up to ~300 m2/g, accessible for reaction. Maximal production of methanol (~1106 gmethanolKgCu-1∙h-1) and DME (760 gDMEKgCu-1∙h-1) were obtained for catalysts containing 7% wt. Cu/Zn with a weight ratio of 2.3 Zn to Cu (at 300 °C, 50 bar). The promising results in CO2 hydrogenation to methanol and DME obtained here point out the significant advantage of nanofiber-based catalysts in heterogeneous catalysis.

2.
ACS Appl Mater Interfaces ; 14(37): 41851-41860, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36094823

ABSTRACT

Hematite is a classical photoanode material for photoelectrochemical water splitting due to its stability, performance, and low cost. However, the effect of particle size is still a question due to the charge transfer to the electrodes. In this work, we addressed this subject by the fabrication of a photoelectrode with hematite nanoparticles embedded in close contact with the electrode substrate. The nanoparticles were synthesized by a solvothermal method and colloidal stabilization with charged hydroxide molecules, and we were able to further use them to prepare electrodes for water photo-oxidation. Hematite nanoparticles were embedded within electrospun tin-doped indium oxide nanofibers. The fibrous layer acted as a current collector scaffold for the nanoparticles, supporting the effective transport of charge carriers. This method allows better contact of the nanoparticles with the substrate, and also, the fibrous scaffold increases the optical density of the photoelectrode. Electrodes based on nanofibers with embedded nanoparticles display significantly enhanced photoelectrochemical performance compared to their flat nanoparticle-based layer counterparts. This nanofiber architecture increases the photocurrent density and photon-to-current internal conversion efficiency by factors of 2 and 10, respectively.

3.
Nat Commun ; 10(1): 2348, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31138796

ABSTRACT

Most studies on the skin focus primarily on the hair follicle and interfollicular epidermis, whereas little is known regarding the homeostasis of the sebaceous gland (SG). The SG has been proposed to be replenished by different pools of hair follicle stem cells and cells that resides in the SG base, marked by Blimp1. Here, we demonstrate that single Blimp1+ cells isolated from mice have the potential to generate SG organoids in vitro. Mimicking SG homeostasis, the outer layer of these organoids is composed of proliferating cells that migrate inward, undergo terminal differentiation and generating lipid-filled sebocytes. Performing confocal microscopy and mass-spectrometry, we report that these organoids exhibit known markers and a lipidomic profile similar to SGs in vivo. Furthermore, we identify a role for c-Myc in sebocyte proliferation and differentiation, and determine that SG organoids can serve as a platform for studying initial stages of acne vulgaris, making this a useful platform to identify potential therapeutic targets.


Subject(s)
Cell Differentiation , Cell Proliferation , Organoids/metabolism , Positive Regulatory Domain I-Binding Factor 1/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Sebaceous Glands/metabolism , Animals , Epidermis/metabolism , Epidermis/ultrastructure , In Vitro Techniques , Lipid Metabolism , Mass Spectrometry , Mice , Microscopy, Confocal , Organoids/ultrastructure , Sebaceous Glands/ultrastructure , Stem Cells/metabolism , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...