Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Saudi J Biol Sci ; 24(4): 843-850, 2017 May.
Article in English | MEDLINE | ID: mdl-28490956

ABSTRACT

Diabetes mellitus is a major leading cause of end-stage renal failure, characterized by kidney inflammation and glomerular dysfunction, in worldwide. Kidney inflammation is associated to modifications in the expression levels of pro-inflammatory molecules, such as nuclear factor-κB (NFκB) and adhesion molecules, such as E-cadherin, leading to glomerular dysfunction. However, the relationships between these two processes in human diabetic nephropathy remain an open question. Since Psammomys obesus is an ideal animal model to study diabetes mellitus temporal evolution, we have used this model to study the correlation between kidney structural changes and modification on the expression levels of NFκB and E-cadherin over time. We have demonstrated that, after induction of diabetes metillus with a high energy diet (HED), P. obesus develops the characteristic symptoms of human disease. In detail, at the third month nuclear factor NFκB is expressed in the kidney of diabetic P. obesus and structural renal changes, such as mesangial expansion or interstitial fibrosis, are detectable; at 6 months, thickening of glomerular basement membrane, glomerular sclerosis, and tubular atrophy occurs; at 9 months, symptoms of the final stages of the disease, such as down expression of E-cadherin, happens. As a result of these observations we proposed that NFκB activation and E-cadherin down-expression are interlinked on diabetic kidney disease (DKD).

2.
C R Biol ; 339(11-12): 475-486, 2016.
Article in English | MEDLINE | ID: mdl-27614586

ABSTRACT

The aim of our transmission electron microscope study was to show, for the first time, the alteration of liver cells involved in the evolution of steatosis to steatohepatitis on a murine model of the diet-induced metabolic syndrome, Psammomys obesus. This pathologic evolution was induced by using the standard laboratory diet during 10 months, and analyzed with metabolic studies and the immunohistochemistry technique. Four months later, hepatocytes charged with lipid vacuoles were involved in autophagy. Furthermore, in the sinusoids, we observed Kupffer cells, neutrophils and macrophages. All those cells were associated with necrotic hepatocytes inducing hepatocellular necrosis. We also noticed a synthesis of extracellular matrix in excess, caused by proliferation and activation of hepatic stellate cells in necrotic areas. We observed as well a fragmentation of the endoplasmic reticulum, which formed isolated membranes (phagophores) surrounding mitochondria. The complex membrane-mitochondria formed like an autophagosome. Thus, a defect in autophagy favored the development and progression of steatohepatitis. In conclusion, our results suggest that P. obesus is very well adapted for experimental research, and could help improve the early therapeutic management of patients and the prevention of autophagic risks in the liver.


Subject(s)
Autophagy , Fatty Liver/metabolism , Fatty Liver/pathology , Gerbillinae/metabolism , Inflammation/metabolism , Inflammation/pathology , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Animals , Body Weight , Endoplasmic Reticulum Stress/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Hepatocytes/pathology , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/pathology , Liver/pathology , Male , Necrosis , Obesity/genetics , Obesity/pathology , Organ Size
3.
Biol Trace Elem Res ; 173(1): 108-15, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26779622

ABSTRACT

This study investigated the anti-diabetic preventive activity of coenzyme Q10 (CoQ10) in a murine model of diet-induced insulin resistance (IR), Psammomys obesus (Po). IR was induced by feeding a standard laboratory diet (SD). CoQ10 oil suspension was orally administered at 10 mg/kg body weight (BW)/day along with SD for 9 months. Anthropometric parameters, namely, total body weight gain (BWG) and the relative weight of white adipose tissue (WAT) were determined. Blood glucose, insulin, quantitative insulin sensitivity check index (QUICKI), total antioxidant status (TAS), iron, malondialdehyde (MDA) and nitrite (NO2 (-)) were evaluated. NO2 (-) level was also assessed in peripheral blood mononuclear cells (PBMCs) culture supernatants. Our results show that CoQ10 supplementation significantly improved blood glucose, insulin, QUICKI, TAS, iron and MDA, but influenced neither NO2 (-) levels nor the anthropometric parameters. These findings support the hypothesis that CoQ10 would exert an anti-diabetic activity by improving both glycaemic control and antioxidant protection. The most marked effect of CoQ10 observed in this study concerns the regulation of iron levels, which may carry significant preventive importance.


Subject(s)
Antioxidants/pharmacology , Dietary Supplements , Insulin Resistance , Iron Overload/prevention & control , Ubiquinone/analogs & derivatives , Animals , Gerbillinae , Iron Overload/metabolism , Ubiquinone/pharmacology
4.
Bioinformatics ; 30(6): 792-800, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24202541

ABSTRACT

MOTIVATION: Identifying protein cavities, channels and pockets accessible to ligands is a major step to predict potential protein-ligands complexes. It is also essential for preparation of protein-ligand docking experiments in the context of enzymatic activity mechanism and structure-based drug design. RESULTS: We introduce a new method, implemented in a program named CCCPP, which computes the void parts of the proteins, i.e. cavities, channels and pockets. The present approach is a variant of the alpha shapes method, with the advantage of taking into account the size and the shape of the ligand. We show that the widely used spherical model of ligands is most of the time inadequate and that cylindrical shapes are more realistic. The analysis of the void parts of the protein is done via a network of channels depending on the ligand. The performance of CCCPP is tested with known substrates of cytochromes P450 (CYP) 1A2 and 3A4 involved in xenobiotics metabolism. The test results indicate that CCCPP is able to find pathways to the buried heminic P450 active site even for high molecular weight CYP 3A4 substrates such as two ketoconazoles together, an experimentally observed situation. AVAILABILITY: Free binaries are available through a software repository at http://petitjeanmichel.free.fr/itoweb.petitjean.freeware.html CONTACT: michel.petitjean@univ-paris-diderot.fr.


Subject(s)
Cytochrome P-450 CYP1A1/chemistry , Cytochrome P-450 CYP3A/chemistry , Algorithms , Binding Sites , Drug Design , Humans , Ligands , Models, Molecular , Porosity , Protein Interaction Domains and Motifs , Software
5.
Diabetes Metab Syndr Obes ; 5: 337-45, 2012.
Article in English | MEDLINE | ID: mdl-23055758

ABSTRACT

Cardiovascular disease, including atherosclerosis, is the leading cause of death in patients with diabetes worldwide; thus, it is a major medical concern. The endothelium contributes to the control of many vascular functions, and clinical observations show that it is a primary target for diabetic syndrome. To get better insight into the mechanisms underlying atherosclerosis, we studied the interspecific differences in the arterial metabolisms of two, Psammomys obesus and Gerbillus gerbillus, as well as Rattus norvegicus (Wistar rat), well known for its atheroresistance. Twenty-two enzymatic activities and six macromolecular substances were histochemically compared in the two desert species and in Wistar aortas (abdominal and thoracic) and arteries (femoral and caudal) embedded in a common block. In the healthy adult rodents, enzyme activities were very intense. They demonstrated that aortic myocytes are capable of various synthesis and catabolism processes. However, considering the frequency of atherosclerosis and its phenotypes, significant differences appeared between the species studied. Our comparative study shows that aortic atherosensitive animals have several common metabolic characteristics, which are found in Psammomys rich in metachromatic glycosaminoglycans (involved in the inhibition of lipolysis and in calcification of the organic matrix), reduced activity in enzymes related to the Krebs cycle (weakening energetic power), and low lipolytic enzyme, adenosine triphosphatase, and adenosine diphosphatase activities. However, the most fundamental pathophysiological difference is the low lipolytic power of the aorta of Psammomys when compared to Wistar rats. This characteristic determines its atherosensitivity and makes this animal model more applicable to the experimental development of atherosclerosis.

6.
J Mol Model ; 16(12): 1919-29, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20237816

ABSTRACT

Stilbene analogs are a new class of anti-inflammatory compounds that effectively inhibit COX-2, which is the major target in the treatment of inflammation and pain. In this study, docking simulations were conducted using AutoDock 4 software that focused on the binding of this class of compounds to COX-2 protein. Our aim was to better understand the structural and chemical features responsible for the recognition mechanism of these compounds, and to explore their binding modes of interaction at the active site by comparing them with COX-2 co-crystallized with SC-558. The docking results allowed us to provide a plausible explanation for the different binding affinities observed experimentally. These results show that important conserved residues, in particular Arg513, Phe518, Trp387, Leu352, Leu531 and Arg120, could be essential for the binding of the ligands to COX-2 protein. The quality of the docking model was estimated based on the binding energies of the studied compounds. A good correlation was obtained between experimental logAr values and the predicted binding energies of the studied compounds.


Subject(s)
Cyclooxygenase 2/chemistry , Cyclooxygenase 2/metabolism , Models, Molecular , Stilbenes/chemistry , Stilbenes/metabolism , Binding Sites , Catalytic Domain , Computer Simulation , Drug Design , Hydrophobic and Hydrophilic Interactions , Ligands , Protein Binding , Protein Conformation , Protein Isoforms , Software
7.
J Mol Model ; 14(4): 303-14, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18286312

ABSTRACT

Pyridopyrimidine-based analogues are among the most highly potent and selective antagonists of cholecystokinin receptor subtype-1 (CCK1R) described to date. To better understand the structural and chemical features responsible for the recognition mechanism, and to explore the binding pocket of these compounds, we performed automated molecular docking using GOLD2.2 software on some derivatives with structural diversity, and propose a putative binding conformation for each compound. The docking protocol was guided by the key role of the Asn333 residue, as revealed by site directed mutagenesis studies. The results suggest two putative binding modes located in the same pocket. Both are characterized by interaction with the main residues revealed by experiment, Asn333 and Arg336, and differ in the spatial position of the Boc-Trp moiety of these compounds. Hydrophobic contacts with residues Thr117, Phe107, Ile352 and Ile329 are also in agreement with experimental data. Despite the poor correlation obtained between the estimated binding energies and the experimental activity, the proposed models allow us to suggest a plausible explanation of the observed binding data in accordance with chemical characteristics of the compounds, and also to explain the observed diastereoselectivity of this family of antagonists towards CCK1R. The most reasonable selected binding conformations could be the starting point for future studies. Figure Superimposition of the two putative binding conformations revealed by molecular docking for pyridopyrimidine-based CCK1 antagonists.


Subject(s)
Drug Design , Models, Molecular , Pyrimidines/chemistry , Receptor, Cholecystokinin A/chemistry , Binding Sites , Computer Simulation , Entropy , Ligands , Molecular Conformation , Protein Conformation , Pyrimidines/pharmacology , Receptor, Cholecystokinin A/agonists , Software , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...