Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 12(12): 1136, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876563

ABSTRACT

Glucocorticoids (GCs) are widely prescribed for their anti-inflammatory and immunosuppressive properties as a treatment for a variety of diseases. The use of GCs is associated with important side effects, including diabetogenic effects. However, the underlying mechanisms of GC-mediated diabetogenic effects in ß-cells are not well understood. In this study we investigated the role of glycogen synthase kinase 3 (GSK3) in the mediation of ß-cell death and dysfunction induced by GCs. Using genetic and pharmacological approaches we showed that GSK3 is involved in GC-induced ß-cell death and impaired insulin secretion. Further, we unraveled the underlying mechanisms of GC-GSK3 crosstalk. We showed that GSK3 is marginally implicated in the nuclear localization of GC receptor (GR) upon ligand binding. Furthermore, we showed that GSK3 regulates the expression of GR at mRNA and protein levels. Finally, we dissected the proper contribution of each GSK3 isoform and showed that GSK3ß isoform is sufficient to mediate the pro-apoptotic effects of GCs in ß-cells. Collectively, in this work we identified GSK3 as a viable target to mitigate GC deleterious effects in pancreatic ß-cells.


Subject(s)
Glucocorticoids , Glycogen Synthase Kinase 3 , Apoptosis , Cell Death , Glucocorticoids/adverse effects , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3 beta/genetics
2.
Cancers (Basel) ; 13(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34638342

ABSTRACT

Malignant melanoma is one of the most aggressive skin cancers and is characterized by early lymph node metastasis and the capacity to develop resistance to therapies. Hence, understanding the regulation of lymphangiogenesis through mechanisms contributing to lymphatic vessel formation represents a treatment strategy for metastatic cancer. We have previously shown that CD147, a transmembrane glycoprotein overexpressed in melanoma, regulates the angiogenic process in endothelial cells. In this study, we show a correlation between high CD147 expression levels and the number of lymphatic vessels expressing LYVE-1, Podoplanin, and VEGFR-3 in human melanoma lymph nodes. CD147 upregulates in vitro lymphangiogenesis and its related mediators through the PROX-1 transcription factor. In vivo studies in a melanoma model confirmed that CD147 is involved in metastasis through a similar mechanism as in vitro. This study, demonstrating the paracrine role of CD147 in the lymphangiogenesis process, suggests that CD147 could be a promising target for the inhibition of melanoma-associated lymphangiogenesis.

3.
Biomolecules ; 10(7)2020 07 16.
Article in English | MEDLINE | ID: mdl-32708537

ABSTRACT

OBJECTIVE: Type 2 diabetes (T2D) occurs by deterioration in pancreatic ß-cell function and/or progressive loss of pancreatic ß-cell mass under the context of insulin resistance. α7 nicotinic acetylcholine receptor (nAChR) may contribute to insulin sensitivity but its role in the pathogenesis of T2D remains undefined. We investigated whether the systemic lack of α7 nAChR was sufficient to impair glucose homeostasis. METHODS: We used an α7 nAChR knock-out (α7-/-) mouse model fed a standard chow diet. The effects of the lack of α7 nAChR on islet mass, insulin secretion, glucose and insulin tolerance, body composition, and food behaviour were assessed in vivo and ex vivo experiments. RESULTS: Young α7-/- mice display a chronic mild high glycemia combined with an impaired glucose tolerance and a marked deficit in ß-cell mass. In addition to these metabolic disorders, old mice developed adipose tissue inflammation, elevated plasma free fatty acid concentrations and presented glycolytic muscle insulin resistance in old mice. Finally, α7-/- mice, fed a chow diet, exhibited a late-onset excessive gain in body weight through increased fat mass associated with higher food intake. CONCLUSION: Our work highlights the important role of α7 nAChR in glucose homeostasis. The constitutive lack of α7 nAChR suggests a novel pathway influencing the pathogenesis of T2D.


Subject(s)
Glucose Intolerance/genetics , Hyperglycemia/genetics , Insulin Resistance , alpha7 Nicotinic Acetylcholine Receptor/genetics , Animals , Cell Line , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Female , Gene Deletion , Glucose/metabolism , Glucose Intolerance/metabolism , Hyperglycemia/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Rats , alpha7 Nicotinic Acetylcholine Receptor/metabolism
4.
J Endocrinol ; 244(1): 133-148, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31600727

ABSTRACT

Islet inflammation is associated with defective ß cell function and mass in type 2 diabetes (T2D). Glycogen synthase kinase 3 (GSK3) has been identified as an important regulator of inflammation in different diseased conditions. However, the role of GSK3 in islet inflammation in the context of diabetes remains unexplored. In this study, we investigated the direct implication of GSK3 in islet inflammation in vitro and tested the impact of GSK3 inhibition in vivo, on the reduction of islet inflammation, and the improvement of glucose metabolism in the Goto-Kakizaki (GK) rat, a spontaneous model of T2D. GK rats were chronically treated with infra-therapeutic doses of lithium, a widely used inhibitor of GSK3. We analyzed parameters of glucose homeostasis as well as islet inflammation and fibrosis in the endocrine pancreas. Ex vivo, we tested the impact of GSK3 inhibition on the autonomous inflammatory response of non-diabetic rat and human islets, exposed to a mix of pro-inflammatory cytokines to mimic an inflammatory environment. Treatment of young GK rats with lithium prevented the development of overt diabetes. Lithium treatment resulted in reduced expression of pro-inflammatory cytokines in the islets. It decreased islet fibrosis and partially restored the glucose-induced insulin secretion in GK rats. Studies in non-diabetic human and rat islets exposed to inflammatory environment revealed the direct implication of GSK3 in the islet autonomous inflammatory response. We show for the first time, the implication of GSK3 in islet inflammation and suggest this enzyme as a viable target to treat diabetes-associated inflammation.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Glycogen Synthase Kinase 3/metabolism , Islets of Langerhans/metabolism , Animals , Disease Models, Animal , Fibrosis , Glucose/metabolism , Humans , Inflammation , Insulin Secretion , Male , Rats , Rats, Wistar
5.
Oncotarget ; 6(12): 9766-80, 2015.
Article in English | MEDLINE | ID: mdl-25825981

ABSTRACT

EMMPRIN/CD147 is mainly known for its protease inducing function but a role in promoting tumor angiogenesis has also been demonstrated. This study provides evidence that EMMPRIN is a new coreceptor for the VEGFR-2 tyrosine kinase receptor in both endothelial and tumor cells, as it directly interacts with it and regulates its activation by its VEGF ligand, signalling and functional consequences both in vitro and in vivo. Computational docking analyses and mutagenesis studies identified a molecular binding site in the extracellular domain of EMMPRIN located close to the cell membrane and containing the amino acids 195/199. EMMPRIN is overexpressed in cancer and hence is able to further potentiate VEGFR-2 activation, suggesting that a combinatory therapy of an antiangiogenic drug together with an inhibitor of EMMPRIN/VEGFR-2 interaction may have a greater impact on inhibiting angiogenesis and malignancy.


Subject(s)
Basigin/metabolism , Gene Expression Regulation, Neoplastic , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Angiogenesis Inhibitors/chemistry , Animals , Binding Sites , Cell Line , Cell Line, Tumor , Cell Membrane/metabolism , Cell Movement , Cell-Free System , Computer Simulation , Female , Gene Silencing , Humans , Ligands , Mice , Mice, Nude , Microvessels/cytology , Mutagenesis , Mutagenesis, Site-Directed , Neoplasm Transplantation , Neovascularization, Pathologic , Phosphorylation , Protein Binding , Protein Structure, Tertiary , RNA, Small Interfering/metabolism , Recombinant Proteins/metabolism , Signal Transduction
6.
Exp Dermatol ; 24(6): 443-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25807898

ABSTRACT

EMMPRIN is known to promote tumor invasion through extracellular matrix (ECM) degradation. Here we report that EMMPRIN can regulate melanoma cell adhesion to the ECM through an interaction with ß1 integrin involving kindlin-3. In this study, EMMPRIN knockdown in the human melanoma cell line M10 using siRNA decreased cell invasion and significantly increased cell adhesion and spreading. A morphological change from a round to a spread shape was observed associated with enhanced phalloidin-labelled actin staining. In situ proximity ligation assay and co-immunoprecipitation revealed that EMMPRIN silencing increased the interaction of ß1 integrin with kindlin-3, a focal adhesion protein. This was associated with an increase in ß1 integrin activation and a decrease in the phosphorylation of the downstream integrin kinase FAK. Moreover, the expression at both the transcript and protein level of kindlin-3 and of ß1 integrin was inversely regulated by EMMPRIN. EMMPRIN did not regulate either talin expression or its interaction with ß1 integrin. These results are consistent with our in vivo demonstration that EMMPRIN inhibition increased ß1 integrin activation and its interaction with kindlin-3. To conclude, these findings reveal a new role of EMMPRIN in tumor cell migration through ß1 integrin/kindlin-3-mediated adhesion pathway.


Subject(s)
Basigin/physiology , Cell Adhesion/physiology , Integrin beta1/physiology , Melanoma/pathology , Membrane Proteins/physiology , Neoplasm Proteins/physiology , Skin Neoplasms/pathology , Animals , Basigin/drug effects , Basigin/genetics , Cell Line, Tumor , Cell Shape/physiology , Extracellular Matrix/physiology , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Heterografts , Humans , In Vitro Techniques , Melanoma/physiopathology , Mice , Mice, Nude , RNA, Small Interfering/pharmacology , Signal Transduction/physiology , Skin Neoplasms/physiopathology
7.
Lung Cancer ; 87(3): 258-64, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25601486

ABSTRACT

OBJECTIVES: Nicotine and its associated nicotinic acetylcholine receptors (nAChRs) are believed to be involved in the progression of lung carcinomas. This study aimed at examining the localization of nAChRs in human lung tumours and, by using primary cultures of tumour cells derived from these tumours, determining the nAChR roles in cell proliferation and tumour invasion. MATERIALS AND METHODS: Immunohistochemistry was used to assess nAChR expression in non-small cell lung carcinomas (NSCLC). Primary cultures of tumour cells were established from NSCLC tissue samples and the effects of nicotine and nAChR antagonists on cell proliferation and invasion were assessed. RESULTS: α5, α7, ß2 and ß4 nAChR subunits were expressed in all adenocarcinomas (AC) and squamous cell carcinomas (SCC) tissue samples. In AC, all subunits were identified in glandular structures. In SCC, α5, ß2 and ß4 subunits were essentially identified in tumour cells at invasive fronts, whereas α7 subunit was mainly present in the most differentiated tumour cells and less frequently at invasive fronts. In AC and SCC, there was an inverse distribution of cell proliferation marker Ki-67 and α7 nAChR. Both α7 nAChR and heteromeric nAChRs positively regulated in vitro tumour invasion in NSCLC. Heteromeric nAChRs had a limited activity in regulating tumour cell proliferation in vitro. In contrast, α7 nAChR was a repressor of proliferation in tumour cells isolated from well differentiated NSCLC but mediated the pro-proliferative activity of nicotine in cells isolated from poorly differentiated NSCLC. CONCLUSION: α7 nAChR and heteromeric α5*ß2*ß4* nAChRs play a role in ex vivo tumour progression by stimulating invasion and, depending on the differentiation status of the tumour, by regulating proliferation. Our results suggest that the use of α7 nAChR antagonists to prevent lung cancer progression should be restricted to poorly differentiated tumours.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Receptors, Nicotinic/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Immunohistochemistry , Neoplasm Invasiveness , Nicotinic Antagonists/pharmacology
8.
Mol Genet Metab ; 112(1): 64-72, 2014 May.
Article in English | MEDLINE | ID: mdl-24685552

ABSTRACT

Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated cation channels well characterized in neuronal signal transmission. Moreover, recent studies have revealed nAChR expression in nonneuronal cell types throughout the body, including tissues involved in metabolism. In the present study, we screen gene expression of nAChR subunits in pancreatic islets and adipose tissues. Mice pancreatic islets present predominant expression of α7 and ß2 nAChR subunits but at a lower level than in central structures. Characterization of glucose and energy homeostasis in α7ß2nAChR(-/-) mice revealed no major defect in insulin secretion and sensitivity but decreased glycemia apparently unrelated to gluconeogenesis or glycogenolysis. α7ß2nAChR(-/-) mice presented an increase in lean and bone body mass and a decrease in fat storage with normal body weight. These observations were associated with elevated spontaneous physical activity in α7ß2nAChR(-/-) mice, mainly due to elevation in fine vertical (rearing) activity while their horizontal (ambulatory) activity remained unchanged. In contrast to α7nAChR(-/-) mice presenting glucose intolerance and insulin resistance associated to excessive inflammation of adipose tissue, the present metabolic phenotyping of α7ß2nAChR(-/-) mice revealed a metabolic improvement possibly linked to the increase in spontaneous physical activity related to central ß2nAChR deficiency.


Subject(s)
Adipose Tissue/metabolism , Glucose/metabolism , Islets of Langerhans/metabolism , Receptors, Nicotinic/metabolism , Animals , Glycemic Index , Humans , Insulin/metabolism , Insulin Secretion , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity , Receptors, Nicotinic/genetics
9.
Proc Natl Acad Sci U S A ; 110(10): 4099-104, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23431157

ABSTRACT

Loss or dysfunction of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) leads to impairment of airway mucus transport and to chronic lung diseases resulting in progressive respiratory failure. Nicotinic acetylcholine receptors (nAChRs) bind nicotine and nicotine-derived nitrosamines and thus mediate many of the tobacco-related deleterious effects in the lung. Here we identify α7 nAChR as a key regulator of CFTR in the airways. The airway epithelium in α7 knockout mice is characterized by a higher transepithelial potential difference, an increase of amiloride-sensitive apical Na(+) absorption, a defective cAMP-dependent Cl(-) conductance, higher concentrations of Na(+), Cl(-), K(+), and Ca(2+) in secretions, and a decreased mucus transport, all relevant to a deficient CFTR activity. Moreover, prolonged nicotine exposure mimics the absence of α7 nAChR in mice or its inactivation in vitro in human airway epithelial cell cultures. The functional coupling of α7 nAChR to CFTR occurs through Ca(2+) entry and activation of adenylyl cyclases, protein kinase A, and PKC. α7 nAChR, CFTR, and adenylyl cyclase-1 are physically and functionally associated in a macromolecular complex within lipid rafts at the apical membrane of surface and glandular airway epithelium. This study establishes the potential role of α7 nAChR in the regulation of CFTR function and in the pathogenesis of smoking-related chronic lung diseases.


Subject(s)
Nicotine/toxicity , Receptors, Nicotinic/physiology , Respiratory Mucosa/drug effects , Respiratory Mucosa/physiopathology , Animals , Bungarotoxins/toxicity , Calcium/metabolism , Cells, Cultured , Chlorides/metabolism , Cyclic AMP/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Ion Transport , Membrane Microdomains/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nicotine/administration & dosage , Nicotine/metabolism , Receptors, Nicotinic/deficiency , Receptors, Nicotinic/genetics , alpha7 Nicotinic Acetylcholine Receptor
10.
Am J Pathol ; 175(5): 1868-82, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19808646

ABSTRACT

Airway epithelial basal cells are known to be critical for regenerating injured epithelium and maintaining tissue homeostasis. Recent evidence suggests that the alpha7 nicotinic acetylcholine receptor (nAChR), which is highly permeable to Ca(2+), is involved in lung morphogenesis. Here, we have investigated the potential role of the alpha7 nAChR in the regulation of airway epithelial basal cell proliferation and the differentiation of the human airway epithelium. In vivo during fetal development and in vitro during the regeneration of the human airway epithelium, alpha7 nAChR expression coincides with epithelium differentiation. Inactivating alpha7 nAChR function in vitro increases cell proliferation during the initial steps of the epithelium regeneration, leading to epithelial alterations such as basal cell hyperplasia and squamous metaplasia, remodeling observed in many bronchopulmonary diseases. The regeneration of the airway epithelium after injury in alpha7(-/-) mice is delayed and characterized by a transient hyperplasia of basal cells. Moreover, 1-year-old alpha7(-/-) mice more frequently present basal cells hyperplasia. Modulating nAChR function or expression shows that only alpha7 nAChR, as opposed to heteropentameric alpha(x)beta(y) nAChRs, controls the proliferation of human airway epithelial basal cells. These findings suggest that alpha7 nAChR is a key regulator of the plasticity of the human airway epithelium by controlling basal cell proliferation and differentiation pathway and is involved in airway remodeling during bronchopulmonary diseases.


Subject(s)
Cell Differentiation/physiology , Cell Proliferation , Epithelial Cells/physiology , Receptors, Nicotinic/metabolism , Respiratory Mucosa/cytology , Respiratory Mucosa/physiology , Animals , Binding Sites , Bungarotoxins/metabolism , Cells, Cultured , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/cytology , Humans , Keratins/metabolism , Lung Diseases/pathology , Membrane Proteins/metabolism , Mice , Mice, Knockout , Phenotype , Phosphoproteins/metabolism , Receptors, Nicotinic/genetics , Regeneration/physiology , Respiratory Mucosa/pathology , Zonula Occludens-1 Protein , alpha7 Nicotinic Acetylcholine Receptor
11.
Pathol Res Pract ; 204(12): 891-8, 2008.
Article in English | MEDLINE | ID: mdl-18667281

ABSTRACT

Neuroendocrine (NE) tumors of the lung represent a wide spectrum of phenotypically distinct entities, with differences in tumor progression and aggressiveness, which include carcinoid tumor (CT) and small-cell lung carcinoma (SCLC). Approximately 20-40% of patients with both typical and atypical CT are non-smokers, while virtually all patients with SCLC are cigarette smokers. Cigarette smoke contains numerous molecules which have been identified as carcinogens. The real impact of nicotine in the development of tumors is not well known. Recent studies show that nicotine upregulates factors of transcription through the nicotinic receptors. The aim of our work was to study the expression of the nicotinic receptors in normal and neoplastic pulmonary NE cells. An immunohistochemical study was carried out with antibodies against NE markers and subunits alpha7 and beta2 of nicotinic receptors in 7 normal lungs, 10 CT (8 typical and 2 atypical) and 10 SCLC fixed in formalin and embedded in paraffin. This study was completed with reverse transcription-polymerase chain reactions (RT-PCR) detection of alpha7-subunit nicotinic receptor mRNA expression. Our data showed that beta2-subunit of nicotinic receptors is never expressed in normal NE cells of lungs and very rarely in NE tumors. In contrast, alpha7-subunit is constantly found in NE cells in normal lungs. In tumors, its expression is significantly higher in SCLC than in CT (p=0.009). Thus, alpha7 subunit nicotinic receptor in a context of chronic nicotinic intoxication seems to be associated with an aggressive phenotype in the spectrum of the NE tumors.


Subject(s)
Carcinoid Tumor/metabolism , Lung Neoplasms/metabolism , Neuroendocrine Cells/metabolism , Receptors, Nicotinic/biosynthesis , Small Cell Lung Carcinoma/metabolism , Adult , Aged , Carcinoid Tumor/pathology , Female , Fluorescent Antibody Technique , Gene Expression , Humans , Immunohistochemistry , Lung Neoplasms/pathology , Male , Middle Aged , Neuroendocrine Cells/pathology , Reverse Transcriptase Polymerase Chain Reaction , Small Cell Lung Carcinoma/pathology , Smoking/adverse effects , alpha7 Nicotinic Acetylcholine Receptor
12.
Am J Pathol ; 168(1): 55-68, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16400009

ABSTRACT

Nicotinic acetylcholine receptors (nAChRs), present in human bronchial epithelial cells (HBECs), have been shown in vitro to modulate cell shape. Because cell spreading and migration are important mechanisms involved in the repair of the bronchial epithelium, we investigated the potential role of nAChRs in the wound repair of the bronchial epithelium. In vivo and in vitro, alpha3alpha5beta2-nAChRs accumulated in migrating HBECs involved in repairing a wound, whereas alpha7-nAChRs were predominantly observed in stationary confluent cells. Wound repair was improved in the presence of nAChR agonists, nicotine, and acetylcholine, and delayed in the presence of alpha3beta2 neuronal nAChR antagonists, mecamylamine, alpha-conotoxin MII, and kappa-bungarotoxin; alpha-bungarotoxin, an antagonist of alpha7-nAChR, had no effect. Addition of nicotine to a repairing wound resulted in a dose-dependent transient increase of intracellular calcium in migrating cells that line the wound edge. Mecamylamine and kappa-bungarotoxin inhibited both the cell-migration speed and the nicotine-induced intracellular calcium increase in wound-repairing migrating cells in vitro. On the contrary alpha-bungarotoxin had no significant effect on migrating cells. These results suggest that alpha3alpha5beta2-nAChRs actively contribute to the wound repair process of the respiratory epithelium by modulating intracellular calcium in wound-repairing migrating cells.


Subject(s)
Calcium/metabolism , Cell Movement/physiology , Receptors, Nicotinic/metabolism , Respiratory Mucosa/metabolism , Wound Healing/physiology , Aged , Aged, 80 and over , Cell Movement/drug effects , Cells, Cultured , Humans , Immunoblotting , Immunohistochemistry , Intracellular Fluid/chemistry , Middle Aged , Nicotine/pharmacology , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/drug effects , Respiratory Mucosa/drug effects , Reverse Transcriptase Polymerase Chain Reaction , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...