Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 2(10): 6768-6781, 2017 Oct 31.
Article in English | MEDLINE | ID: mdl-30023532

ABSTRACT

Simple solution combustion synthesis was adopted to synthesize ZnO-ZnS (ZSx) nanocomposites using zinc nitrate as an oxidant and a mixture of urea and thiourea as a fuel. A large thiourea/urea ratio leads to more ZnS in ZSx with heterojunctions between ZnS and ZnO and throughout the bulk; tunable ZnS crystallite size and textural properties are an added advantage. The amount of ZnS in ZSx can be varied by simply changing the thiourea content. Although ZnO and ZnS are wide band gap semiconductors, ZSx exhibits visible light absorption, at least up to 525 nm. This demonstrates an effective reduction of the optical band gap and substantial changes in its electronic structure. Raman spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and secondary-ion mass spectrometry results show features due to ZnO and ZnS and confirm the composite nature with heterojunctions. The above mentioned observations demonstrate the multifunctional nature of ZSx. Bare ZSx exhibits a promising sunlight-driven photocatalytic activity for complete mineralization of endocrine disruptors such as 2,4-dichlorophenol and endosulphan. ZSx also exhibits photocurrent generation at no applied bias. Dye-sensitized solar cell performance evaluation with ZSx shows up to 4% efficiency and 48% incident photon conversion efficiency. Heterojunctions observed between ZnO and ZnS nanocrystallites in high-resolution transmission electron microscopy suggest the reason for effective separation of electron-hole pairs and their utilization.

2.
Dalton Trans ; 43(33): 12546-54, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-25004908

ABSTRACT

The highly desirable combination of the visible light absorption properties of In1-xGaxN Quantum dots (QD) along with the multifunctionality of ZnO into a single integrated material was prepared for solar harvesting. This is the first report on InGaN QD integrated with ZnO (InGaN@ZnO), synthesized by a highly reproducible, simple combustion method in 15 min. Structural, microstructural and electronic integration of the nitride and oxide components of InGaN@ZnO was demonstrated by appropriate characterization methods. Self-assembly of InGaN QD is induced in growing nascent zinc oxo nanoclusters taking advantage of the common wurtzite structure and nitrogen incorporation at the expense of oxygen vacancies. Direct integration brings about a single phase structure exhibiting extensive visible light absorption and high photostability. InGaN@ZnO suggests synergistic operation of light harvesting and charge conducting components for solar H2 generation without using any co-catalyst or sacrificial agent, and a promising photocurrent generation at 0 V under visible light illumination. The present study suggests a direct integration of QD with the host matrix and is a potential method to realize the advantages of QDs.

SELECTION OF CITATIONS
SEARCH DETAIL
...