Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 290: 115068, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35134486

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Mesembryanthemum tortuosum L. (previously known as Sceletium tortuosum (L.) N.E. Br.) is indigenous to South Africa and traditionally used to alleviate anxiety, stress and depression. Mesembrine and its alkaloid analogues such as mesembrenone, mesembrenol and mesembranol have been identified as the key compounds responsible for the reported effects on the central nervous system. AIM OF THE STUDY: To investigate M. tortuosum alkaloids for possible anxiolytic-like effects in the 5-dpf in vivo zebrafish model by assessing thigmotaxis and locomotor activity. MATERIALS AND METHODS: Locomotor activity and reverse-thigmotaxis, recognised anxiety-related behaviours in 5-days post fertilization zebrafish larvae, were analysed under simulated stressful conditions of alternating light-dark challenges. Cheminformatics screening and molecular docking were also performed to rationalize the inhibitory activity of the alkaloids on the serotonin reuptake transporter, the accepted primary mechanism of action of selective serotonin reuptake inhibitors. Mesembrine has been reported to have inhibitory effects on serotonin reuptake, with consequential anti-depressant and anxiolytic effects. RESULTS: All four alkaloids assessed decreased the anxiety-related behaviour of zebrafish larvae exposed to the light-dark challenge. Significant increases in the percentage of time spent in the central arena during the dark phase were also observed when larvae were exposed to the pure alkaloids (mesembrenone, mesembrenol, mesembrine and mesembrenol) compared to the control. However, mesembrenone and mesembranol demonstrated a greater anxiolytic-like effect than the other alkaloids. In addition to favourable pharmacokinetic and physicochemical properties revealed via in silico predictions, high-affinity interactions characterized the binding of the alkaloids with the serotonin transporter. CONCLUSIONS: M. tortuosum alkaloids demonstrated an anxiolytic-like effect in zebrafish larvae providing evidence for its traditional and modern day use as an anxiolytic.


Subject(s)
Alkaloids/pharmacology , Anxiety/pathology , Mesembryanthemum/chemistry , Plant Extracts/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Alkaloids/pharmacokinetics , Animals , Indole Alkaloids/pharmacology , Locomotion/drug effects , Maximum Tolerated Dose , Molecular Docking Simulation , Plant Extracts/pharmacokinetics , Zebrafish
2.
Psychopharmacology (Berl) ; 237(12): 3641-3652, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32840669

ABSTRACT

RATIONALE: Medicinal plants are used extensively in many countries to treat conditions related to the central nervous system (CNS), and there is renewed interest to explore natural products, which may exhibit CNS activity. OBJECTIVE: In this study, seven plants were selected based on literature reports of their ethnopharmacological use in treating anxiety-related conditions and assayed in a zebrafish model. METHODS: Crude extracts were prepared with solvents of different polarities, and the maximum tolerated concentration (MTC) of these crude extracts was established. The anxiolytic activity of the crude extracts was determined using 5-day post-fertilization (dpf) zebrafish larvae. General locomotor activity and reverse-thigmotaxis behavior (indicative of anxiolytic activity) were analyzed under continuous illumination and alternating light-dark challenges, which induced anxiety in the zebrafish larvae. RESULTS: Of the 28 extracts tested, 13 were toxic according to the MTC values obtained. Larvae were subsequently treated with the 15 non-toxic extracts, at a dose determined in the MTC assay or with 1% DMSO as control. The anxiolytic activity (reverse-thigmotaxis) was demonstrated by an increase in the percentage time spent by the larvae in the central arena of the well. Of the 15 non-toxic extracts tested, the Sceletium tortuosum water extract exhibited the most promising anxiolytic activity. CONCLUSIONS: The zebrafish model was effective in studying anxiety-related behavior. Thus, the study confirmed that S. tortuosum mitigates anxiety in zebrafish larvae, a step towards the full in vivo validation of the traditional use of the plant.


Subject(s)
Anti-Anxiety Agents/pharmacology , Locomotion/drug effects , Plant Extracts/pharmacology , Plants, Medicinal , Animals , Anti-Anxiety Agents/isolation & purification , Anti-Anxiety Agents/therapeutic use , Anxiety/drug therapy , Anxiety/psychology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Female , Locomotion/physiology , Male , Models, Animal , Photic Stimulation/methods , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...