Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(28): 11028-11036, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37389435

ABSTRACT

A hexa-peri-hexabenzocoronene (HBC)-substituted dipyridophenazine (dppz) ligand (dppz-HBC) and its corresponding rhenium [Re(CO)3Cl] and ruthenium [Ru(bpy)2]2+ complexes were synthesized and characterized. The interplay of their various excited states was investigated using spectroscopic and computational techniques. Perturbation of the HBC was seen through a broadening and decreased intensity of the HBC absorption bands that dominate the absorption spectra. A delocalized, partial charge transfer state was shown through emission (520 nm) in the ligand and rhenium complex and is supported by time-dependent density functional theory calculations. Transient absorption measurements revealed the presence of dark states with a triplet delocalized state populated in the ligand, while in the complexes, longer-lived (2.3-2.5 µs) triplet HBC states could be accessed. The properties of the studied ligand and complexes provide insight into the future design of polyaromatic systems and add to the rich history of dppz systems.

2.
J Phys Chem A ; 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37310731

ABSTRACT

The vibrational and electronic properties of six systematically altered donor-acceptor dyes were investigated with density functional theory (DFT), spectroscopy, and electrochemical techniques. The dyes incorporated a carbazole donor connected to a dithieno[3,2-b:2',3'-d]thiophene linker at either the C2 (m) or C3 (p) position. Indane-based acceptors contained either dimalononitrile (IndCN), ketone and malononitrile (InOCN) or diketone (IndO) electron accepting groups. Molecular geometries modeled by DFT using the BLYP functional and def2-TZVP basis set showed planar geometries containing large, extended π-systems and produced Raman spectra consistent with the experimental data. Electronic absorption spectra had transitions with π-π* character at wavelengths below 325 nm and a charge transfer (CT) transition region from 500 to 700 nm. The peak wavelength was dependent on the donor and acceptor architecture, with each modulating the HOMO and LUMO levels, respectively, supported by TD-DFT estimates using the LC-ωPBE* functional and 6-31g(d) basis set. The compounds showed emission in solution with quantum yields ranging from 0.004 to 0.6 and lifetimes of less than 2 ns. These were assigned to either π-π* or CT emissive states. Signals attributed to CT states exhibited positive solvatochromism and thermochromism. The spectral emission behavior of each compound trended with the acceptor unit moieties, where malononitrile units lead to greater π-π* character and ketones exhibited greater CT character.

3.
Mol Pharm ; 19(11): 4311-4319, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36170046

ABSTRACT

This work explores the potential use of spatially offset low-frequency anti-Stokes Raman spectroscopy (SOLFARS) to detect subsurface composition below an emissive surface. A range of bilayer tablets were used to evaluate this approach. Bilayer tablets differed in both the underlying layer composition (active pharmaceutical ingredient to excipient ratio, celecoxib: α-lactose monohydrate) and the upper layer thickness of the fluorescent coating (polyvinylpyrrolidone mixture with sunset yellow FCF dye). Two low- (<300 cm-1) plus mid- (300 to 1800 cm-1) frequency Raman instrumental setups, with lateral displacements for spatial analysis of solid dosage forms, using different excitation wavelengths were explored. The 532 nm system was used to illustrate how the low-frequency anti-Stokes Raman approach works with samples exhibiting extreme fluorescence/background emission interference, and the 785 nm system was used to demonstrate the performance when less extreme fluorescence/emission is present. Qualitative and quantitative chemometric analyses were performed to evaluate the performance of individual spectral domains and their combinations for the determination of the composition of the subsurface layer as well as the coating layer thickness. Overall, the commonly used midfrequency region (300-1800 cm-1) proved superior when using 785 nm incident laser for quantifying the coating thickness (amorphous materials), whereas a combined Stokes and anti-Stokes low-frequency region was found to be superior for quantifying underlying crystalline materials. When exploring individual spectral regions for subsurface composition using spatially offset measurements, the anti-Stokes LFR spectral window performed best. The anti-Stokes low-frequency range also demonstrated an advantage for models composed of data exhibiting high levels of fluorescence (e.g., data collected using 532 nm incident laser), as the Stokes scattering was masked by fluorescence. Transmission measurements were also explored for comparison and showed the best applicability for both upper and lower layer analysis, attributed to the inherently larger bulk sampling volume of this setup. From a practical perspective, these results highlight the potential adjustments that can be made to already existing (in-line) Raman setups to facilitate similar analysis in pharmaceutical industry-based settings.


Subject(s)
Lasers , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Tablets , Light
4.
J Phys Chem A ; 126(34): 5681-5691, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35998577

ABSTRACT

The geometric and spectroscopic properties of four cationic N-aryl-2,4,6-triphenylpyridinium-based donor-acceptor dyes─1-[4-(9H-carbazol-9-yl)phenyl]-2,4,6-triphenylpyridinium, 1-[4-(N,N-diphenylamino)phenyl]-2,4,6-triphenylpyridinium, 1-(9-phenyl-9H-carbazol-3-yl)-2,4,6-triphenylpyridinium, and 1-(9-ethyl-9H-carbazol-3-yl)-2,4,6-triphenylpyridinium─are reported. The four dyes exhibited a twisted, quasi-perpendicular geometry about the central donor-acceptor bond, shown by X-ray crystallography and supported by Raman spectroscopy and DFT calculations. The electronic absorption spectra show weak charge transfer (CT) transitions at about 400 nm (ε ∼ 3000 L mol-1 cm-1). Time dependent (TD) DFT supported the nature of the CT transition, displaying an 89-97% shift in electron density from the donor to the acceptor upon electronic excitation. Excited state geometry calculations revealed significant geometry changes upon electronic excitation. Enhancement of vibrational modes attributable to this transition was also recognized in the resonance Raman spectra. Emission spectroscopies showed two distinct emission bands. The lower energy band, resulting from radiative decay of the CT excited state, exhibited large anomalous Stokes shifts of ∼9000 cm-1. Much of the Stokes shift was a consequence of geometry changes between the ground and excited states. This was confirmed by variable temperature emission studies, with Stokes shifts reducing by up to 3000 cm-1 upon cooling from 293 to 80 K. Additionally, a high energy aggregation induced emission band was present for two of the dyes, resulting from the inhibition of excited state geometry reorganization and supported by solid-state emission spectra. These phenomena exemplify the importance of geometry in short range donor-acceptor dyes such as these.

5.
Inorg Chem ; 60(16): 11852-11865, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34311548

ABSTRACT

A 2,2'-bipyridine with bulky triphenylamine substituents in the 6 and 6' positions of the ligand (6,6'-ditriphenylamine-2,2'-bipyridine, 6,6'-diTPAbpy) was generated. Despite the steric bulk, the ligand readily formed bis(homoleptic) complexes with copper(I) and silver(I) ions. Unfortunately, efforts to use the 6,6'-diTPAbpy system to generate heteroleptic [Cu(6,6'-diTPAbpy)(bpy)]+ complexes were unsuccessful with only the [Cu(6,6'-diTPAbpy)2](PF6) complex observed. The 6,6'-diTPAbpy ligand could also be reacted with 6-coordinate metal ions that featured small ancillary ligands, namely, the [Re(CO)3Cl] and [Ru(CO)2Cl2] fragments. While the complexes could be formed in good yields, the steric bulk of the TPA units does alter the coordination geometry. This is most readily seen in the [(6,6'-diTPAbpy)Re(CO)3Cl] complex where the Re(I) ion is forced to sit 23° out of the plane formed by the bpy unit. The electrochemical and photophysical properties of the family of compounds were also examined. 6,6'-diTPAbpy exhibits a strong ILCT absorption band (356 nm, 50 mM-1 cm-1) which displays a small increase in intensity for the homoleptic complexes ([Cu(6,6'-diTPAbpy)2]+; 353 nm, 72 mM-1 cm-1, [Ag(6,6'-diTPAbpy)2]+; 353 nm, 75 mM-1 cm-1), despite containing 2 equiv of the ligand, attributed to an increased dihedral angle between the TPA and bpy moieties. For the 6-coordinate complexes the ILCT band is further decreased in intensity and overlaps with MLCT bands, consistent with a further increased TPA-bpy dihedral angle. Emission from the 1ILCT state is observed at 436 nm (τ = 4.4 ns) for 6,6'-diTPAbpy and does not shift for the Cu, Ag, and Re complexes, although an additional 3MLCT emission is observed for [Re(6,6'-diTPAbpy)(CO)3Cl] (640 nm, τ = 13.8 ns). No emission was observed for [Ru(6,6'-diTPAbpy)(CO)2Cl2]. Transient absorption measurements revealed the population of a 3ILCT state for the Cu and Ag complexes (τ = 80 ns). All assignments were supported by TD-DFT calculations and resonance Raman spectroscopic measurements.

6.
Inorg Chem ; 59(23): 16967-16975, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33175498

ABSTRACT

The photophysical properties of a series of heteroleptic Ru(II) complexes of the form [Ru(phen)2(phen-5,6-R2)]2+, where phen = 1,10-phenanthroline and R = phenyl (Ph), p-tert-butylbenzene (p-Ph-tBu), p-methoxybenzene (p-Ph-OMe), and 2-naphthalene (2-naph), have been measured. Variation of the R group does not greatly perturb the electronic properties of the ground state, which were explored with electronic absorption and resonance Raman spectroscopy and are akin to those of the archetypal parent complex [Ru(phen)3]2+. All complexes were shown to possess emissive 3MLCT states, characterized through transient absorption and emission spectroscopy. However, an additional, long-lived excited state was observed in the Ru(II) naphthalene complex. The naphthalene substituents facilitate population of a 40 µs dark state which decays independently to that of the emissive 3MLCT state. This state was characterized as 3LC in nature, delocalized over the naphthalene substituted ligand.

7.
J Phys Chem A ; 124(27): 5513-5522, 2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32512993

ABSTRACT

A series of ß-ferrocene-modified zinc porphyrins, with various electron-withdrawing units appended to the ferrocene, were synthesized, and their electronic properties were investigated. The ferrocene was able to be modified with the substituents, with its oxidation potential increased by up to 0.3 V, without significantly perturbing the porphyrin core. A small red-shift of the strongest absorption band (B band) occurred upon the addition of the electron-withdrawing substituents (270 cm-1), occurring alongside a broadening of the band. The singlet state is unaffected by the ferrocene substitution; however, the triplet state lifetimes are decreased by 10.4-10.6 µs from that of the unsubstituted ferrocene porphyrin (18.1 µs). Computational studies showed that the changes in the optical properties are due to a loss of degeneracy of the porphyrin lowest unoccupied molecular orbitals; this is supported by resonance Raman spectroscopy studies, which show different enhancement patterns when probing the high- and low-energy edges of the B band.

8.
Chem Asian J ; 14(8): 1194-1203, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30633442

ABSTRACT

The synthesis and characterisation of a series of [RuII (bpy)2 L] and [Ir(ppy)2 L] complexes containing ligands L with the potential to engage in triple hydrogen bonding interactions is described. L1 and L2 comprise pyridyl triazole chelating units with pendant diaminotriazine units, capable of donor-acceptor-donor (DAD) hydrogen bonding, while L3 and L4 contain ADA hydrogen bonding units proximal to N^N and N^O cleating sites, respectively. X-ray crystallography shows the L1 and L2 containing RuII complexes to assemble via R 2 2 8 hydrogen bonding dimers, while [RuII (bpy)2 L4] assembles via extended hydrogen bonding motifs to form one dimensional chains. By contrast, the expected hydrogen bonding patterns are not observed for the RuII and IrIII complexes of L3. Spectroscopic studies show that the absorption spectra of the complexes result from combinations of MLCT and LLCT transitions. The L1 and L2 complexes of IrIII and RuII complexes are emissive in the solid state and it seems likely that hydrogen bonding to complementary species may facilitate tuning of their 3 ILCT emission. Low frequency Raman spectra provide further evidence for ordered interactions in the solid state for the L4 complexes, consistent with the results from X-ray crystallography.

9.
J Phys Chem A ; 122(40): 7991-8006, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30044631

ABSTRACT

The synthesis, spectroscopic characterization, and computational modeling of seven benzo[ c][2,1,3]thiadiazole-based donor-acceptor dyes is reported. Using a range of linker units, it is possible to alter the lowest energy transition in terms of intensity (from 8000 to 25000 L mol-1 cm-1) and wavelength (from 350 to 430 nm). Resonance Raman spectroscopy was used in concert with DFT calculations to indicate that the linker unit participates in charge transfer processes. In each compound the excited state behavior appears to be primarily described by a BTD●--Linker-TPA●+ state. Stokes shift versus solvent parameter gradients are on the order of 15000 cm-1, indicating Δµ values are large. Dual emission is observed in six of the seven compounds and it can be modulated as a function of solvent. TD-DFT calculations, including excited state optimizations (linear response and state specific), indicate that the lowest energy emission is charge transfer in character. The high energy emissive state is assigned as n-π*. In nonpolar solvents, only the low energy charge transfer emission band is observed and this band generally has a high quantum yield (Φ ≈ 0.9). For compounds with phenyl and triazolyl linkers, in polar solvents only the high energy n-π* emission is observed. The high energy n-π* emission has a low quantum yield regardless of solvent.

10.
J Phys Chem A ; 122(18): 4448-4456, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29672040

ABSTRACT

Porphyrins have characteristic optical properties which give them the potential to be used in a range of applications. In this study, a series of ß-indandione modified zinc porphyrins, systematically changed in terms of linker length and substituent, resulted in absorption spectra that are dramatically different than that observed for the parent zinc porphyrin (ZnTXP, 5,10,15,20-tetrakis(3,5-dimethylphenyl)porphyrinato zinc(II)). These changes include strong absorptions at 420, 541, and 681 nm (110.2, 57.5, and 29.2 mM-1 cm-1, respectively) for the most perturbed compound. Computational studies were conducted and showed the different optical effects are due to a reorganization of molecular orbitals (MOs) away from Gouterman's four-orbital model. The substituent effects alter both unoccupied and occupied MOs. An increased length of linker group raised the energy of the HOMO-2 such that it plays a significant role in the observed transitions. The degenerate LUMO (eg) set are split by substitution, and this splitting may be increased by use of a propylidenodinitrile group, which shows the lowest-energy transitions and the greatest spectral perturbation from the parent zinc porphyrin complex. These data are supported by resonance Raman spectroscopy studies which show distinct enhancement of phenyl modes for high-energy transitions and indandione modes for lower-energy transitions.

11.
Molecules ; 23(2)2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29443935

ABSTRACT

A series of eight carbazole-cyanoacrylate based donor-acceptor dyes were studied. Within the series the influence of modifying the thiophene bridge, linking donor and acceptor and a change in the nature of the acceptor, from acid to ester, was explored. In this joint experimental and computational study we have used electronic absorbance and emission spectroscopies, Raman spectroscopy and computational modeling (density functional theory). From these studies it was found that extending the bridge length allowed the lowest energy transition to be systematically red shifted by 0.12 eV, allowing for limited tuning of the absorption of dyes using this structural motif. Using the aforementioned techniques we demonstrate that this transition is charge transfer in nature. Furthermore, the extent of charge transfer between donor and acceptor decreases with increasing bridge length and the bridge plays a smaller role in electronically mixing with the acceptor as it is extended.


Subject(s)
Carbazoles/chemistry , Coloring Agents/chemistry , Cyanoacrylates/chemistry , Computational Biology , Electrons , Molecular Structure , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...