Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 13(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37189556

ABSTRACT

Technology-assisted diagnosis is increasingly important in healthcare systems. Brain tumors are a leading cause of death worldwide, and treatment plans rely heavily on accurate survival predictions. Gliomas, a type of brain tumor, have particularly high mortality rates and can be further classified as low- or high-grade, making survival prediction challenging. Existing literature provides several survival prediction models that use different parameters, such as patient age, gross total resection status, tumor size, or tumor grade. However, accuracy is often lacking in these models. The use of tumor volume instead of size may improve the accuracy of survival prediction. In response to this need, we propose a novel model, the enhanced brain tumor identification and survival time prediction (ETISTP), which computes tumor volume, classifies it into low- or high-grade glioma, and predicts survival time with greater accuracy. The ETISTP model integrates four parameters: patient age, survival days, gross total resection (GTR) status, and tumor volume. Notably, ETISTP is the first model to employ tumor volume for prediction. Furthermore, our model minimizes the computation time by allowing for parallel execution of tumor volume computation and classification. The simulation results demonstrate that ETISTP outperforms prominent survival prediction models.

2.
Neural Netw ; 160: 238-258, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36701878

ABSTRACT

BACKGROUND: The idea of smart healthcare has gradually gained attention as a result of the information technology industry's rapid development. Smart healthcare uses next-generation technologies i.e., artificial intelligence (AI) and Internet of Things (IoT), to intelligently transform current medical methods to make them more efficient, dependable and individualized. One of the most prominent uses of telemedicine and e-health in medical image analysis is teledermatology. Telecommunications technologies are used in this industry to send medical information to professionals. Teledermatology is a useful method for the identification of skin lesions, particularly in rural locations, because the skin is visually perceptible. One of the most recent tools for diagnosing skin cancer is dermoscopy. To classify skin malignancies, numerous computational approaches have been proposed in the literature. However, difficulties still exist i.e., lesions with low contrast, imbalanced datasets, high level of memory complexity, and the extraction of redundant features. METHODS: In this work, a unified CAD model is proposed based on a deep learning framework for skin lesion segmentation and classification. In the proposed approach, the source dermoscopic images are initially pre-processed using a contrast enhancement based modified bio-inspired multiple exposure fusion approach. In the second stage, a custom 26-layered convolutional neural network (CNN) architecture is designed to segment the skin lesion regions. In the third stage, four pre-trained CNN models (Xception, ResNet-50, ResNet-101 and VGG16) are modified and trained using transfer learning on the segmented lesion images. In the fourth stage, the deep features vectors are extracted from all the CNN models and fused using the convolutional sparse image decomposition fusion approach. In the fifth stage, the univariate measurement and Poisson distribution feature selection approach is used for the best features selection for classification. Finally, the selected features are fed to the multi-class support vector machine (MC-SVM) for the final classification. RESULTS: The proposed approach employed to the HAM10000, ISIC2018, ISIC2019, and PH2 datasets and achieved an accuracy of 98.57%, 98.62%, 93.47%, and 98.98% respectively which are better than previous works. CONCLUSION: When compared to renowned state-of-the-art methods, experimental results show that the proposed skin lesion detection and classification approach achieved higher performance in terms of both visually and enhanced quantitative evaluation with enhanced accuracy.


Subject(s)
Deep Learning , Melanoma , Skin Neoplasms , Humans , Artificial Intelligence , Algorithms , Dermoscopy/methods , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/pathology , Delivery of Health Care
3.
Medicina (Kaunas) ; 58(8)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36013557

ABSTRACT

Background and Objectives: Clinical diagnosis has become very significant in today's health system. The most serious disease and the leading cause of mortality globally is brain cancer which is a key research topic in the field of medical imaging. The examination and prognosis of brain tumors can be improved by an early and precise diagnosis based on magnetic resonance imaging. For computer-aided diagnosis methods to assist radiologists in the proper detection of brain tumors, medical imagery must be detected, segmented, and classified. Manual brain tumor detection is a monotonous and error-prone procedure for radiologists; hence, it is very important to implement an automated method. As a result, the precise brain tumor detection and classification method is presented. Materials and Methods: The proposed method has five steps. In the first step, a linear contrast stretching is used to determine the edges in the source image. In the second step, a custom 17-layered deep neural network architecture is developed for the segmentation of brain tumors. In the third step, a modified MobileNetV2 architecture is used for feature extraction and is trained using transfer learning. In the fourth step, an entropy-based controlled method was used along with a multiclass support vector machine (M-SVM) for the best features selection. In the final step, M-SVM is used for brain tumor classification, which identifies the meningioma, glioma and pituitary images. Results: The proposed method was demonstrated on BraTS 2018 and Figshare datasets. Experimental study shows that the proposed brain tumor detection and classification method outperforms other methods both visually and quantitatively, obtaining an accuracy of 97.47% and 98.92%, respectively. Finally, we adopt the eXplainable Artificial Intelligence (XAI) method to explain the result. Conclusions: Our proposed approach for brain tumor detection and classification has outperformed prior methods. These findings demonstrate that the proposed approach obtained higher performance in terms of both visually and enhanced quantitative evaluation with improved accuracy.


Subject(s)
Brain Neoplasms , Support Vector Machine , Artificial Intelligence , Brain Neoplasms/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer
4.
Sensors (Basel) ; 21(11)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34205120

ABSTRACT

Diabetic retinopathy (DR) is the main cause of blindness in diabetic patients. Early and accurate diagnosis can improve the analysis and prognosis of the disease. One of the earliest symptoms of DR are the hemorrhages in the retina. Therefore, we propose a new method for accurate hemorrhage detection from the retinal fundus images. First, the proposed method uses the modified contrast enhancement method to improve the edge details from the input retinal fundus images. In the second stage, a new convolutional neural network (CNN) architecture is proposed to detect hemorrhages. A modified pre-trained CNN model is used to extract features from the detected hemorrhages. In the third stage, all extracted feature vectors are fused using the convolutional sparse image decomposition method, and finally, the best features are selected by using the multi-logistic regression controlled entropy variance approach. The proposed method is evaluated on 1509 images from HRF, DRIVE, STARE, MESSIDOR, DIARETDB0, and DIARETDB1 databases and achieves the average accuracy of 97.71%, which is superior to the previous works. Moreover, the proposed hemorrhage detection system attains better performance, in terms of visual quality and quantitative analysis with high accuracy, in comparison with the state-of-the-art methods.


Subject(s)
Deep Learning , Diabetes Mellitus , Algorithms , Fundus Oculi , Hemorrhage , Humans , Neural Networks, Computer , Retina
5.
Diagnostics (Basel) ; 10(11)2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33167376

ABSTRACT

Technology-assisted clinical diagnosis has gained tremendous importance in modern day healthcare systems. To this end, multimodal medical image fusion has gained great attention from the research community. There are several fusion algorithms that merge Computed Tomography (CT) and Magnetic Resonance Images (MRI) to extract detailed information, which is used to enhance clinical diagnosis. However, these algorithms exhibit several limitations, such as blurred edges during decomposition, excessive information loss that gives rise to false structural artifacts, and high spatial distortion due to inadequate contrast. To resolve these issues, this paper proposes a novel algorithm, namely Convolutional Sparse Image Decomposition (CSID), that fuses CT and MR images. CSID uses contrast stretching and the spatial gradient method to identify edges in source images and employs cartoon-texture decomposition, which creates an overcomplete dictionary. Moreover, this work proposes a modified convolutional sparse coding method and employs improved decision maps and the fusion rule to obtain the final fused image. Simulation results using six datasets of multimodal images demonstrate that CSID achieves superior performance, in terms of visual quality and enriched information extraction, in comparison with eminent image fusion algorithms.

SELECTION OF CITATIONS
SEARCH DETAIL
...