Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Cardiovasc Med ; 8: 756269, 2021.
Article in English | MEDLINE | ID: mdl-34712716

ABSTRACT

Introduction: Lipopolysaccharide (LPS) is a component of gram-negative bacteria, known for its ability to trigger inflammation. The main pathway of LPS clearance is the reverse lipopolysaccharide transport (RLT), with phospholipid transfer protein (PLTP) and lipoproteins playing central roles in this process in experimental animal models. To date, the relevance of this pathway has never been studied in humans. Cardiac surgery with cardiopulmonary bypass is known to favor LPS digestive translocation. Our objective was to determine whether pre-operative PLTP activity and triglyceride or cholesterol-rich lipoprotein concentrations were associated to LPS concentrations in patients undergoing cardiac surgery with cardiopulmonary bypass. Methods: A post-hoc analysis was conducted on plasma samples obtained from patients recruited in a randomized controlled trial.Total cholesterol, high density lipoprotein cholesterol (HDLc), low density lipoprotein cholesterol (LDLc), triglyceride and PLTP activity were measured before surgery. LPS concentration was measured by mass spectrometry before surgery, at the end of cardiopulmonary bypass and 24 h after admission to the intensive care unit. Results: High PLTP activity was associated with lower LPS concentration but not with inflammation nor post-operative complications. HDLc, LDLc and total cholesterol were not associated with LPS concentration but were lower in patients developing post-operative adverse events. HDLc was negatively associated with inflammation biomarkers (CRP, PCT). Triglyceride concentrations were positively correlated with LPS concentration, PCT and were higher in patients with post-operative complications. Conclusion: Our study supports the role of PLTP in LPS elimination and the relevance of RLT in human. PLTP activity, and not cholesterol rich lipoproteins pool size seemed to be the limiting factor for RLT. PLTP activity was not directly related to post-operative inflammation and adverse events, suggesting that LPS clearance is not the main driver of inflammation in our patients. However, HDLc was associated with lower inflammation and was associated with favorable outcomes, suggesting that HDL beneficial anti-inflammatory effects could be, at least in part independent of LPS clearance.

2.
Atherosclerosis ; 320: 10-18, 2021 03.
Article in English | MEDLINE | ID: mdl-33497863

ABSTRACT

BACKGROUND AND AIMS: Apolipoprotein (apo) C1 is a 6.6 kDa protein associated with HDL and VLDL. ApoC1 alters triglyceride clearance, and it also favors cholesterol accumulation in HDL, especially by inhibiting CETP in human plasma. Apart from studies in mice, which lack CETP, the impact of apoC1 on atherosclerosis in animal models expressing CETP, like in humans, is not known. This study aimed at determining the net effect of human apoC1 on atherosclerosis in rabbits, a species with naturally high CETP activity but with endogenous apoC1 without CETP inhibitory potential. METHODS: Rabbits expressing a human apoC1 transgene (HuApoC1Tg) were generated and displayed significant amounts of human apoC1 in plasma. RESULTS: After cholesterol feeding, atherosclerosis lesions were significantly less extensive (-22%, p < 0.05) and HDL displayed a reduced ability to serve as CETP substrates (-25%, p < 0.05) in HuApoC1Tg rabbits than in WT littermates. It was associated with rises in plasma HDL cholesterol level and PON-1 activity, and a decrease in the plasma level of the lipid oxidation markers 12(S)-HODE and 8(S)HETE. In chow-fed animals, the level of HDL-cholesterol was also significantly higher in HuApoC1Tg than in WT animals (0.83 ± 0.11 versus 0.73 ± 0.11 mmol/L, respectively, p < 0.05), and it was associated with significantly lower CETP activity (cholesteryl ester transfer rate, -10%, p < 0.05; specific CETP activity, -14%, p < 0.05). CONCLUSIONS: Constitutive expression of fully functional human apoC1 in transgenic rabbit attenuates atherosclerosis. It was found to relate, at least in part, to the inhibition of plasma CETP activity and to alterations in plasma HDL.


Subject(s)
Apolipoprotein C-I , Atherosclerosis , Animals , Apolipoprotein C-I/genetics , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Cholesterol Ester Transfer Proteins/genetics , Cholesterol, HDL/metabolism , Gene Transfer Techniques , Humans , Mice , Rabbits
3.
Environ Pollut ; 270: 116243, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33326921

ABSTRACT

BACKGROUND: Bisphenol S is an endocrine disruptor exhibiting metabolic disturbances, especially following perinatal exposures. To date, no data are available on the obesogen effects of BPS in a mutligenerational issue. OBJECTIVES: We investigated obesogen effects of BPS in a multigenerational study by focusing on body weight, adipose tissue and plasma parameters in male and female mice. METHODS: Pregnant C57BL6/J mice were exposed to BPS (1.5 µg/kg bw/day ie a human equivalent dose of 0.12 µg/kg bw/day) by drinking water from gestational day 0 to post natal day 21. All offsprings were fed with a high fat diet during 15 weeks. Body weight was monitored weekly and fat mass was measured before euthanasia. At euthanasia, blood glucose, insuline, triglyceride, cholesterol and no esterified fatty acid plasma levels were determined and gene expressions in visceral adipose tissue were assessed. F1 males and females were mated to obtain the F2 generation. Likewise, the F2 mice were cross-bred to obtain F3. The same analyses were performed. RESULTS: In F1 BPS induced an overweight in male mice associated to lipolysis gene expressions upregulation. In F1 females, dyslipidemia was observed. In F2, BPS exposure was associated to an increase in body weight, fat and VAT masses in males and females. Several plasma parameters were increased but with a sex related pattern (blood glucose, triglycerides and cholesterol in males and NEFA in females). We observed a down-regulation in mRNA expression of gene involved in lipogenesis and in lipolysis for females but only in the lipogenesis for males. In F3, a decrease in VAT mass and an upregulation of lipogenesis gene expression occurred only in females. CONCLUSIONS: BPS perinatal exposure induced sex-dependent obesogen multigenerational effects, the F2 generation being the most impacted. Transgenerational disturbances persisted only in females.


Subject(s)
Diet, High-Fat , Prenatal Exposure Delayed Effects , Animals , Diet, High-Fat/adverse effects , Female , Mice , Phenols/toxicity , Pregnancy , Sulfones
4.
Front Physiol ; 11: 726, 2020.
Article in English | MEDLINE | ID: mdl-32714209

ABSTRACT

Diet-induced obesity (DIO) is associated with a defect of the orosensory detection of dietary lipids in rodents. This dysfunction is not anecdotic since it might worsen the negative effects of obesity by promoting the overconsumption of energy-dense foods. Previous studies have highlighted a progressive devaluation of reward value of lipid stimuli due to a desensitization of dopaminergic brain areas in DIO mice. Paradoxically, the putative deleterious impact of obesity on peripheral fat detection by the gustatory papillae remains poorly documented. Using a whole transcriptomic investigation of the circumvallate papillae (CVP), an analysis of CVP genes involved in fat taste transduction and signaling along the day, and two bottle choice tests, we have found that (i) CVP, known to house the most taste buds in the oral cavity, displays a genic circadian rhythm, (ii) DIO reduces the oscillation of key genes involved both in the circadian clock and lipid detection/signaling, and (iii) the gene invalidation of the clock gene Rev-Erbα does not significantly affect fat preference despite an oily solution intake slightly lower than littermate controls. Taken together these data bring the first demonstration that the gustatory function is under control of a peripheral clock in mammals, as already reported in fly and suggest that a disturbance of this rhythmicity might contribute to the lower fatty taste acuity found in obese mice.

5.
Eur J Endocrinol ; 183(3): 297-306, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32570209

ABSTRACT

OBJECTIVE: Glucocorticoids (GC) are associated with increased cardiovascular morbidity despite increased HDL-C concentration. HDL-mediated cholesterol efflux, a major anti-atherogenic property of HDL particles, is negatively associated with CVD risk. We aimed to determine whether HDL-mediated cholesterol efflux was influenced by GC. DESIGN: Prospective, observational study. METHODS: Lipid parameters, HDL composition, HDL-mediated cholesterol efflux, cholesteryl ester transfer protein, phospholipid transfer protein and lecithin cholesterol acyl-transferase (LCAT) activities were determined in ten patients with giant cell arteritis before and 3 months after GC introduction and in seven control subjects. HDL concentration and composition, HDL-mediated cholesterol efflux and LCAT activity were determined in GC-treated mice. RESULTS: In patients, HDL-C concentration was higher after than before treatment GC-treatment (P = 0.002), while HDL-mediated cholesterol efflux was decreased (P = 0.008) and negatively associated with the proportion of cholesteryl ester in HDL (P = 0.04), independently of CRP. As well, in mice, HDL-C level was increased after GC exposure (P = 0.04) and HDL-mediated cholesterol efflux decreased (P = 0.04). GC-treated patients had higher cholesteryl ester content in HDL, higher HDL2-to-HDL3 ratio and higher LCAT activity than before treatment (P = 0.008, P = 0.02 and P = 0.004, respectively). CONCLUSIONS: We report, for the first time, that in patients with giant cell arteritis and mice treated with GC, HDL-mediated cholesterol efflux was impaired by GC besides an increased HDL-C level. This impaired HDL functionality, possibly related to HDL enrichment in cholesteryl ester, could contribute to the increased CVD risk observed in GC-treated patients. Further studies are needed in larger populations, to further decipher the effect of GC on HDL.


Subject(s)
Cholesterol, HDL/blood , Cholesterol/metabolism , Glucocorticoids/pharmacology , Animals , Biological Transport/drug effects , Cholesterol Ester Transfer Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Phospholipid Transfer Proteins/metabolism , Phospholipids/metabolism , Prospective Studies , Sphingolipids/metabolism
6.
Sci Rep ; 9(1): 9134, 2019 06 24.
Article in English | MEDLINE | ID: mdl-31235831

ABSTRACT

Obesity may not be consistently associated with metabolic disorders and mortality later in life, prompting exploration of the challenging concept of healthy obesity. Here, the consumption of a high-fat/high-sucrose (HF/HS) diet produces hyperglycaemia and hypercholesterolaemia, increases oxidative stress, increases endotoxaemia, expands adipose tissue (with enlarged adipocytes, enhanced macrophage infiltration and the accumulation of cholesterol and oxysterols), and reduces the median lifespan of obese mice. Despite the persistence of obesity, supplementation with a polyphenol-rich plant extract (PRPE) improves plasma lipid levels and endotoxaemia, prevents macrophage recruitment to adipose tissues, reduces adipose accumulation of cholesterol and cholesterol oxides, and extends the median lifespan. PRPE drives the normalization of the HF/HS-mediated functional enrichment of genes associated with immunity and inflammation (in particular the response to lipopolysaccharides). The long-term limitation of immune cell infiltration in adipose tissue by PRPE increases the lifespan through a mechanism independent of body weight and fat storage and constitutes the hallmark of a healthy adiposity trait.


Subject(s)
Adiposity/drug effects , Diet , Longevity/drug effects , Obesity/pathology , Obesity/physiopathology , Plant Extracts/pharmacology , Polyphenols/analysis , Adipose Tissue/drug effects , Adipose Tissue/pathology , Animals , Down-Regulation/drug effects , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Plant Extracts/chemistry
7.
Obesity (Silver Spring) ; 26(12): 1905-1914, 2018 12.
Article in English | MEDLINE | ID: mdl-30369067

ABSTRACT

OBJECTIVE: An original device for exploring taste-guided reward behavior in rodents using a newly designed computer-controlled liquid delivery system equipped with "lickometers" is described. METHODS: This octagonal shaped "gustometer" is composed of eight shutters that give random access during a few seconds to eight bottles delivering different liquid stimuli. This original design, which forces the animal to move for access to the drinking source, allows a simultaneous analysis of the licking behavior and motivation to drink. Determination of the sucrose licking behavior in diet-induced obese mice was used to validate this method because nutritional obesity disturbs the sweet taste perception in rodents. RESULTS: A rise in sucrose response threshold and a decrease in the motivation to drink sweet solutions were found in mice fed the obesogenic diet. These data were highly reproducible among independent studies and corroborated the existence of functional links between diet-induced obesity and gustation in rodents. CONCLUSIONS: The FRM-8 gustometer appears to be especially suitable for exploring determinants of behavioral outputs in response to oro-sensory stimuli in the mouse. It also provides substantial information on the taste-reward relationship, useful for better understanding the origin of gustatory efficiency or, conversely, dysfunction, as reported in nutritional obesity.


Subject(s)
Behavior, Animal/drug effects , Diet/adverse effects , Obesity/physiopathology , Sucrose/metabolism , Taste/physiology , Animals , Disease Models, Animal , Male , Mice , Mice, Obese , Rodentia
8.
Nutrients ; 10(10)2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30241419

ABSTRACT

Obesity is one of the major public health issues, and its prevalence is steadily increasing all the world over. The endocannabinoid system (ECS) has been shown to be involved in the intake of palatable food via activation of cannabinoid 1 receptor (CB1R). However, the involvement of lingual CB1R in the orosensory perception of dietary fatty acids has never been investigated. In the present study, behavioral tests on CB1R-/- and wild type (WT) mice showed that the invalidation of Cb1r gene was associated with low preference for solutions containing rapeseed oil or a long-chain fatty acid (LCFA), such as linoleic acid (LA). Administration of rimonabant, a CB1R inverse agonist, in mice also brought about a low preference for dietary fat. No difference in CD36 and GPR120 protein expressions were observed in taste bud cells (TBC) from WT and CB1R-/- mice. However, LCFA induced a higher increase in [Ca2+]i in TBC from WT mice than that in TBC from CB1R-/- mice. TBC from CB1R-/- mice also exhibited decreased Proglucagon and Glp-1r mRNA and a low GLP-1 basal level. We report that CB1R is involved in fat taste perception via calcium signaling and GLP-1 secretion.


Subject(s)
Fatty Acids , Food Preferences , Obesity/genetics , Receptor, Cannabinoid, CB1/genetics , Taste Buds/metabolism , Taste Perception/genetics , Taste/genetics , Animals , CD36 Antigens/genetics , CD36 Antigens/metabolism , Calcium Signaling/genetics , Cannabinoid Receptor Antagonists/pharmacology , Dietary Fats , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Glucagon-Like Peptide-1 Receptor/metabolism , Linoleic Acid , Male , Mice, Knockout , Obesity/etiology , Proglucagon/genetics , Proglucagon/metabolism , RNA, Messenger/metabolism , Rapeseed Oil , Receptor, Cannabinoid, CB1/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Rimonabant/pharmacology
9.
J Lipid Res ; 58(10): 1950-1961, 2017 10.
Article in English | MEDLINE | ID: mdl-28765208

ABSTRACT

Transmissible spongiform encephalopathies are fatal neurodegenerative diseases with an urgent need for therapeutic and prophylactic strategies. At the time when the blood-mediated transmission of prions was demonstrated, in vitro studies indicated a high binding affinity of the scrapie prion protein (PrPSc) with apoB-containing lipoproteins, i.e., the main carriers of cholesterol in human blood. The aim of the present study was to explore the relationship between circulating cholesterol-containing lipoproteins and the pathogenicity of prions in vivo. We showed that, in mice with a genetically engineered deficiency for the plasma lipid transporter, phospholipid transfer protein (PLTP), abnormally low circulating cholesterol concentrations were associated with a significant prolongation of survival time after intraperitoneal inoculation of the 22L prion strain. Moreover, when circulating cholesterol levels rose after feeding PLTP-deficient mice a lipid-enriched diet, a significant reduction in survival time of mice together with a marked increase in the accumulation rate of PrPSc deposits in their brain were observed. Our results suggest that the circulating cholesterol level is a determinant of prion propagation in vivo and that cholesterol-lowering strategies might be a successful therapeutic approach for patients suffering from prion diseases.


Subject(s)
Cholesterol/blood , Prions/pharmacology , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Female , Gene Knockout Techniques , Mice , Mice, Inbred C57BL , Phospholipid Transfer Proteins/deficiency , Phospholipid Transfer Proteins/genetics , Survival Analysis
10.
Sci Rep ; 7(1): 3053, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28596518

ABSTRACT

Although plasma phospholipid transfer protein (PLTP) has been mainly studied in the context of atherosclerosis, it shares homology with proteins involved in innate immunity. Here, we produced active recombinant human PLTP (rhPLTP) in the milk of new lines of transgenic rabbits. We successfully used rhPLTP as an exogenous therapeutic protein to treat endotoxemia and sepsis. In mouse models with injections of purified lipopolysaccharides or with polymicrobial infection, we demonstrated that rhPLTP prevented bacterial growth and detoxified LPS. In further support of the antimicrobial effect of PLTP, PLTP-knocked out mice were found to be less able than wild-type mice to fight against sepsis. To our knowledge, the production of rhPLTP to counter infection and to reduce endotoxemia and its harmful consequences is reported here for the first time. This paves the way for a novel strategy to satisfy long-felt, but unmet needs to prevent and treat sepsis.


Subject(s)
Anti-Infective Agents/therapeutic use , Phospholipid Transfer Proteins/therapeutic use , Sepsis/drug therapy , Animals , Anti-Infective Agents/pharmacology , Mice , Mice, Inbred C57BL , Phospholipid Transfer Proteins/pharmacology , Rabbits , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use
11.
FASEB J ; 30(10): 3489-3500, 2016 10.
Article in English | MEDLINE | ID: mdl-27358389

ABSTRACT

Obesity is a major public health problem. An in-depth knowledge of the molecular mechanisms of oro-sensory detection of dietary lipids may help fight it. Humans and rodents can detect fatty acids via lipido-receptors, such as CD36 and GPR120. We studied the implication of the MAPK pathways, in particular, ERK1/2, in the gustatory detection of fatty acids. Linoleic acid, a dietary fatty acid, induced via CD36 the phosphorylation of MEK1/2-ERK1/2-ETS-like transcription factor-1 cascade, which requires Fyn-Src kinase and lipid rafts in human taste bud cells (TBCs). ERK1/2 cascade was activated by Ca2+ signaling via opening of the calcium-homeostasis modulator-1 (CALHM1) channel. Furthermore, fatty acid-evoked Ca2+ signaling and ERK1/2 phosphorylation were decreased in both human TBCs after small interfering RNA knockdown of CALHM1 channel and in TBCs from Calhm1-/- mice. Targeted knockdown of ERK1/2 by small interfering RNA or PD0325901 (MEK1/2 inhibitor) in the tongue and genetic ablation of Erk1 or Calhm1 genes impaired preference for dietary fat in mice. Lingual inhibition of ERK1/2 in healthy volunteers also decreased orogustatory sensitivity for linoleic acid. Our data demonstrate that ERK1/2-MAPK cascade is regulated by the opening of CALHM1 Ca2+ channel in TBCs to modulate orogustatory detection of dietary lipids in mice and humans.-Subramaniam, S., Ozdener, M. H., Abdoul-Azize, S., Saito, K., Malik, B., Maquart, G., Hashimoto, T., Marambaud, P., Aribi, M., Tordoff, M. G., Besnard, P., Khan, N. A. ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans.


Subject(s)
Fatty Acids/genetics , MAP Kinase Signaling System , Taste Buds/drug effects , Taste/drug effects , Animals , Benzamides/pharmacology , Calcium Signaling/drug effects , Dietary Fats/metabolism , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Fatty Acids/metabolism , Food Preferences/drug effects , Humans , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Mice, Knockout , MicroRNAs/genetics , Obesity/metabolism , Taste/physiology , Taste Perception/drug effects , Taste Perception/genetics
12.
Am J Pathol ; 183(3): 975-86, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23830874

ABSTRACT

Plasma phospholipid transfer protein (PLTP) increases the circulating levels of proatherogenic lipoproteins, accelerates blood coagulation, and modulates inflammation. The role of PLTP in the development of abdominal aortic aneurysm (AAA) was investigated by using either a combination of mechanical and elastase injury at one site of mouse aorta (elastase model) or continuous infusion of angiotensin II in hyperlipidemic ApoE-knockout mice (Ang II model). With the elastase model, complete PLTP deficiency was associated with a significantly lower incidence and a lesser degree of AAA expansion. With the Ang II model, findings were consistent with those in the elastase model, with a lower severity grade in PLTP-deficient mice, an intermediate phenotype in PLTP-deficient heterozygotes, and a blunted effect of the PLTP-deficient trait when restricted to bone marrow-derived immune cells. The protective effect of whole-body PLTP deficiency in AAA was illustrated further by a lesser degree of adventitia expansion, reduced elastin degradation, fewer recruited macrophages, and less smooth muscle cell depletion in PLTP-deficient than in wild-type mice, as evident from comparative microscopic analysis of aorta sections. Finally, cumulative evidence supports the association of PLTP deficiency with reduced expression and activity levels of matrix metalloproteinases, known to degrade elastin and collagen. We conclude that PLTP can play a significant role in the pathophysiology of AAA.


Subject(s)
Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Phospholipid Transfer Proteins/deficiency , Phospholipid Transfer Proteins/metabolism , Angiotensin II , Animals , Aorta/pathology , Aortic Aneurysm, Abdominal/complications , Apolipoproteins E/deficiency , CD4-Positive T-Lymphocytes/metabolism , Cytokines/metabolism , Elastin/metabolism , Inflammation/complications , Inflammation/pathology , Liver/metabolism , Liver/pathology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pancreatic Elastase
SELECTION OF CITATIONS
SEARCH DETAIL
...