Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 9(21): 18151-18160, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28466635

ABSTRACT

Organic conductors are being evaluated for potential use in waste heat recovery through lightweight and flexible thermoelectric generators manufactured using cost-effective printing processes. Assessment of the potentiality of organic materials in real devices still requires a deeper understanding of the physics behind their thermoelectric properties, which can pave the way toward further development of the field. This article reports a detailed thermoelectric study of a set of highly conducting inkjet-printed films of commercially available poly(3,4-ethylenedioxythiophene) polystyrene sulfonate formulations characterized by in-plane electrical conductivity, spanning the interval 10-500 S/cm. The power factor is maximized for the formulation showing an intermediate electrical conductivity. The Seebeck coefficient is studied in the framework of Mott's relation, assuming a (semi-)classical definition of the transport function. Ultraviolet photoelectron spectroscopy at the Fermi level clearly indicates that the shape of the density of states alone is not sufficient to explain the observed Seebeck coefficient, suggesting that carrier mobility is important in determining both the electrical conductivity and thermopower. Finally, the cross-plane thermal conductivity is reliably extracted thanks to a scaling approach that can be easily performed using typical pump-probe spectroscopy.

2.
J Phys Chem Lett ; 7(17): 3353-8, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27508347

ABSTRACT

Nowadays, SWCNTs are envisaged to enhance the charge separation or transport of conjugated polymer-fullerene derivatives blends. In this work we studied, by means of ultrafast transient absorption spectroscopy, three components blends in which commercially available SWCNTs are added to the standard bulk heterojunction. We explored three different configurations that give rise to diverse interfacing scenarios. We found strong evidence of a direct hole transfer from photoexcited SWCNTs to the P3HT polymer. The transfer efficiency depends on the interface configuration. It is the highest for the blend where we achieve closer contact between the (6,5) SWCNTs and the polymer. When the polymer blend is deposited on top of the nanotube film or the nanotube film is deposited onto the polymer blend, the process is slowed down due to less or missing interfacing of the carbon nanotubes with the polymer chains. Additionally we demonstrate a cascading effect in the electron path, which stabilizes charge separation by further transferring the electron left behind by hole transfer to the polymer to the adjacent (7,5) SWCNTs. Our results highlight the potential of semiconducting SWCNTs to improving the performance of organic solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...