Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Respir Cell Mol Biol ; 70(6): 446-456, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38329817

ABSTRACT

Lung macrophages constitute a sophisticated surveillance and defense system that contributes to tissue homeostasis and host defense and allows the host to cope with the myriad of insults and antigens to which the lung mucosa is exposed. As opposed to alveolar macrophages, lung interstitial macrophages (IMs) express high levels of Type 2 major histocompatibility complex (MHC-II), a hallmark of antigen-presenting cells. Here, we showed that lung IMs, like dendritic cells, possess the machinery to present soluble antigens in an MHC-II-restricted way. Using ex vivo ovalbumin (OVA)-specific T cell proliferation assays, we found that OVA-pulsed IMs could trigger OVA-specific CD4+ T cell proliferation and Foxp3 expression through MHC-II-, IL-10-, and transforming growth factor ß-dependent mechanisms. Moreover, we showed that IMs efficiently captured locally instilled antigens in vivo, did not migrate to the draining lymph nodes, and enhanced local interactions with CD4+ T cells in a model of OVA-induced allergic asthma. These results support that IMs can present antigens to CD4+ T cells and trigger regulatory T cells, which might attenuate lung immune responses and have functional consequences for lung immunity and T cell-mediated disorders.


Subject(s)
Antigen Presentation , Asthma , Forkhead Transcription Factors , Lung , Ovalbumin , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/immunology , Ovalbumin/immunology , Lung/immunology , Antigen Presentation/immunology , Asthma/immunology , Mice, Inbred C57BL , Mice , Cell Proliferation , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Antigens/immunology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/immunology , Interleukin-10/metabolism , Interleukin-10/immunology , Macrophages/immunology , Macrophages/metabolism , Lymphocyte Activation/immunology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Mice, Inbred BALB C
2.
Nat Immunol ; 24(5): 827-840, 2023 05.
Article in English | MEDLINE | ID: mdl-36928411

ABSTRACT

Resident tissue macrophages (RTMs) are differentiated immune cells that populate distinct niches and exert important tissue-supportive functions. RTM maintenance is thought to rely either on differentiation from monocytes or on RTM self-renewal. Here, we used a mouse model of inducible lung interstitial macrophage (IM) niche depletion and refilling to investigate the development of IMs in vivo. Using time-course single-cell RNA-sequencing analyses, bone marrow chimeras and gene targeting, we found that engrafted Ly6C+ classical monocytes proliferated locally in a Csf1 receptor-dependent manner before differentiating into IMs. The transition from monocyte proliferation toward IM subset specification was controlled by the transcription factor MafB, while c-Maf specifically regulated the identity of the CD206+ IM subset. Our data provide evidence that, in the mononuclear phagocyte system, the ability to proliferate is not merely restricted to myeloid progenitor cells and mature RTMs but is also a tightly regulated capability of monocytes developing into RTMs in vivo.


Subject(s)
Macrophages , Monocytes , Animals , Mice , Cell Differentiation , Lung , Cell Proliferation , MafB Transcription Factor/genetics
3.
Front Immunol ; 13: 921077, 2022.
Article in English | MEDLINE | ID: mdl-35911691

ABSTRACT

Asthma encompasses a spectrum of heterogenous immune-mediated respiratory disorders sharing a similar clinical pattern characterized by cough, wheeze and exercise intolerance. In horses, equine asthma can be subdivided into severe or moderate asthma according to clinical symptoms and the extent of airway neutrophilic inflammation. While severe asthmatic horses are characterized by an elevated neutrophilic inflammation of the lower airways, cough, dyspnea at rest and high mucus secretion, horses with moderate asthma show a milder neutrophilic inflammation, exhibit intolerance to exercise but no labored breathing at rest. Yet, the physiopathology of different phenotypes of equine asthma remains poorly understood and there is a need to elucidate the underlying mechanisms tailoring those phenotypes in order to improve clinical management and elaborate novel therapeutic strategies. In this study, we sought to quantify the presence of neutrophil extracellular traps (NETs) in bronchoalveolar lavage fluids (BALF) of moderate or severe asthmatic horses and healthy controls, and assessed whether NETs correlated with disease severity. To this end, we evaluated the amounts of NETs by measuring cell-free DNA and MPO-DNA complexes in BALF supernatants or by quantifying NETs release by BALF cells by confocal microscopy. We were able to unequivocally identify elevated NETs levels in BALF of severe asthmatic horses as compared to healthy controls or moderate asthmatic horses. Moreover, we provided evidence that BALF NETs release was a specific feature seen in severe equine asthma, as opposed to moderate asthma, and correlated with disease severity. Finally, we showed that NETs could act as a predictive factor for severe equine asthma. Our study thus uniquely identifies NETs in BALF of severe asthmatic horses using three distinct methods and supports the idea that moderate and severe equine asthma do not rely on strictly similar pathophysiological mechanisms. Our data also suggest that NETs represent a relevant biomarker, a putative driver and a potential therapeutic target in severe asthma disease.


Subject(s)
Asthma , Extracellular Traps , Animals , Asthma/pathology , Asthma/veterinary , Bronchoalveolar Lavage Fluid , Cough/pathology , Cough/veterinary , Horses , Inflammation/pathology , Inflammation/veterinary , Neutrophils/pathology , Patient Acuity
4.
Nat Immunol ; 20(11): 1444-1455, 2019 11.
Article in English | MEDLINE | ID: mdl-31591573

ABSTRACT

Low exposure to microbial products, respiratory viral infections and air pollution are major risk factors for allergic asthma, yet the mechanistic links between such conditions and host susceptibility to type 2 allergic disorders remain unclear. Through the use of single-cell RNA sequencing, we characterized lung neutrophils in mice exposed to a pro-allergic low dose of lipopolysaccharide (LPS) or a protective high dose of LPS before exposure to house dust mites. Unlike exposure to a high dose of LPS, exposure to a low dose of LPS instructed recruited neutrophils to upregulate their expression of the chemokine receptor CXCR4 and to release neutrophil extracellular traps. Low-dose LPS-induced neutrophils and neutrophil extracellular traps potentiated the uptake of house dust mites by CD11b+Ly-6C+ dendritic cells and type 2 allergic airway inflammation in response to house dust mites. Neutrophil extracellular traps derived from CXCR4hi neutrophils were also needed to mediate allergic asthma triggered by infection with influenza virus or exposure to ozone. Our study indicates that apparently unrelated environmental risk factors can shape recruited lung neutrophils to promote the initiation of allergic asthma.


Subject(s)
Air Pollutants/immunology , Allergens/immunology , Asthma/immunology , Extracellular Traps/metabolism , Neutrophils/immunology , Animals , Dendritic Cells/immunology , Disease Models, Animal , Environmental Exposure/adverse effects , Extracellular Traps/immunology , Female , Humans , Lipopolysaccharides/immunology , Lung/cytology , Lung/immunology , Mice , Neutrophils/metabolism , Orthomyxoviridae/immunology , Ozone/immunology , Pyroglyphidae/immunology , Receptors, CXCR4/immunology , Receptors, CXCR4/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...