Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Learn Mem ; 203: 107796, 2023 09.
Article in English | MEDLINE | ID: mdl-37385521

ABSTRACT

When a neutral stimulus is repeatedly paired with an appetitive reward, two different types of conditioned approach responses may develop: a sign-tracking response directed toward the neutral cue, or a goal-tracking response directed toward the location of impending reward delivery. Sign-tracking responses have been postulated to result from attribution of incentive value to conditioned cues, while goal-tracking reflects the assignment of only predictive value to the cue. We therefore hypothesized that sign-tracking rats would be more sensitive to manipulations of incentive value, while goal-tracking rats would be more responsive to changes in the predictive value of the cue. We tested sign- and goal-tracking before and after devaluation of a food reward using lithium chloride, and tested whether either response could be learned under negative contingency conditions that precluded any serendipitous reinforcement of the behavior that might support instrumental learning. We also tested the effects of blocking the predictive value of a cue using simultaneous presentation of a pre-conditioned cue. We found that sign-tracking was sensitive to outcome devaluation, while goal-tracking was not. We also confirmed that both responses are Pavlovian because they can be learned under negative contingency conditions. Goal-tracking was almost completely blocked by a pre-conditioned cue, while sign-tracking was much less sensitive to such interference. These results indicate that sign- and goal-tracking may follow different rules of reinforcement learning and suggest a need to revise current models of associative learning to account for these differences.


Subject(s)
Goals , Motivation , Rats , Animals , Rats, Sprague-Dawley , Reinforcement, Psychology , Reward , Cues
2.
eNeuro ; 10(5)2023 05.
Article in English | MEDLINE | ID: mdl-37156609

ABSTRACT

The nucleus accumbens (NAc) is known for its central role in reward and motivation (Day and Carelli, 2007; Floresco, 2015; Salgado and Kaplitt, 2015). Decades of research on the cellular arrangement, density, and connectivity of the NAc have identified two main subregions known as the core and shell (Záborszky et al., 1985; Berendse and Groenewegen, 1990; Zahm and Heimer, 1990). Although anatomically and functionally different, both the NAc core and shell are mainly comprised of GABAergic projection neurons known as medium spiny neurons (MSNs) (Matamales et al., 2009). Several studies have identified key morphologic differences between core and shell MSNs (Meredith et al., 1992; Forlano and Woolley, 2010) but few studies have directly addressed how core and shell MSNs differ in their intrinsic excitability (Pennartz et al., 1992; O'Donnell and Grace, 1993). Using whole-cell patch-clamp recordings in slices prepared from naive and rewarded male rats, we found that MSNs in the NAc shell were significantly more excitable than MSNs in the NAc core in both groups. In the shell, MSNs had significantly greater input resistance, lower cell capacitance, and a greater sag. This was accompanied by a lower action potential current threshold, a greater number of action potentials, and faster firing frequency compared with core MSNs. These subregional differences in intrinsic excitability could provide a potential physiological link to the distinct anatomic characteristics of core and shell MSNs and to their distinct functional roles in reward learning (Zahm, 1999; Ito and Hayen, 2011; Saddoris et al., 2015; West and Carelli, 2016).


Subject(s)
Mental Disorders , Nucleus Accumbens , Rats , Animals , Male , Nucleus Accumbens/physiology , Medium Spiny Neurons , Action Potentials/physiology , GABAergic Neurons/physiology
3.
Psychopharmacology (Berl) ; 237(12): 3741-3758, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32852601

ABSTRACT

RATIONALE: Prior research suggests that the neural pathway from the lateral hypothalamic area (LHA) to the paraventricular nucleus of the thalamus (PVT) mediates the attribution of incentive salience to Pavlovian reward cues. However, a causal role for the LHA and the neurotransmitters involved have not been demonstrated in this regard. OBJECTIVES: To examine (1) the role of LHA in the acquisition of Pavlovian conditioned approach (PavCA) behaviors, and (2) the role of PVT orexin 1 receptors (OX1r) and orexin 2 receptors (OX2r) in the expression of PavCA behaviors and conditioned reinforcement. METHODS: Rats received excitotoxic lesions of the LHA prior to Pavlovian training. A separate cohort of rats characterized as sign-trackers (STs) or goal-trackers (GTs) received the OX1r antagonist SB-334867, or the OX2r antagonist TCS-OX2-29, into the PVT, to assess their effects on the expression of PavCA behavior and on the conditioned reinforcing properties of a Pavlovian reward cue. RESULTS: LHA lesions attenuated the development of sign-tracking behavior. Administration of either the OX1r or OX2r antagonist into the PVT reduced sign-tracking behavior in STs. Further, OX2r antagonism reduced the conditioned reinforcing properties of a Pavlovian reward cue in STs. CONCLUSIONS: The LHA is necessary for the development of sign-tracking behavior; and blockade of orexin signaling in the PVT attenuates the expression of sign-tracking behavior and the conditioned reinforcing properties of a Pavlovian reward cue. Together, these data suggest that LHA orexin inputs to the PVT are a key component of the circuitry that encodes the incentive motivational value of reward cues.


Subject(s)
Cues , Hypothalamic Area, Lateral/physiology , Midline Thalamic Nuclei/physiology , Motivation/physiology , Orexin Receptors/physiology , Reward , Animals , Benzoxazoles/administration & dosage , Choice Behavior/drug effects , Choice Behavior/physiology , Conditioning, Classical/drug effects , Conditioning, Classical/physiology , Hypothalamic Area, Lateral/drug effects , Isoquinolines/administration & dosage , Male , Midline Thalamic Nuclei/drug effects , Motivation/drug effects , Naphthyridines/administration & dosage , Orexin Receptor Antagonists/administration & dosage , Pyridines/administration & dosage , Rats , Rats, Sprague-Dawley , Urea/administration & dosage , Urea/analogs & derivatives
4.
Front Behav Neurosci ; 14: 6, 2020.
Article in English | MEDLINE | ID: mdl-32082127

ABSTRACT

Psychoactive substance use is a nearly universal human behavior, but a significant minority of people who use addictive substances will go on to develop an addictive disorder. Similarly, though ~90% of people experience traumatic events in their lifetime, only ~10% ever develop post-traumatic stress disorder (PTSD). Substance use disorders (SUD) and PTSD are highly comorbid, occurring in the same individual far more often than would be predicted by chance given the respective prevalence of each disorder. Some possible reasons that have been proposed for the relationship between PTSD and SUD are self-medication of anxiety with drugs or alcohol, increased exposure to traumatic events due to activities involved in acquiring illegal substances, or addictive substances altering the brain's stress response systems to make users more vulnerable to PTSD. Yet another possibility is that some people have an intrinsic vulnerability that predisposes them to both PTSD and SUD. In this review, we integrate clinical and animal data to explore these possible etiological links between SUD and PTSD, with an emphasis on interactions between dopaminergic, adrenocorticotropic, GABAergic, and glutamatergic neurobehavioral mechanisms that underlie different emotional learning styles.

6.
Neurochem Int ; 125: 91-98, 2019 05.
Article in English | MEDLINE | ID: mdl-30794847

ABSTRACT

The Ih is a mixed depolarizing current present in neurons which, upon activation by hyperpolarization, modulates neuronal excitability in the mesocorticolimbic (MCL) system, an area which regulates emotions such as pleasure, reward, and motivation. Its biophysical properties are determined by HCN protein expression profiles, specifically HCN subunits 1-4. Previously, we reported that cocaine-induced behavioral sensitization increases HCN2 protein expression in all MCL areas with the Ventral Tegmental Area (VTA) showing the most significant increase. Recent evidence suggests that HCN4 also has an important expression in the MCL system. Although there is a significant expression of HCN channels in the MCL system their role in addictive processes is largely unknown. Thus, in this study we aim to compare HCN2 and HCN4 expression profiles and their cellular compartmental distribution in the MCL system, before and after cocaine sensitization. Surface/intracellular (S/I) ratio analysis indicates that VTA HCN2 subunits are mostly expressed in the cell surface in contrast to other areas tested. Our findings demonstrate that after cocaine sensitization, the HCN2 S/I ratio in the VTA was decreased whereas in the Prefrontal Cortex it was increased. In addition, HCN4 total expression in the VTA was decreased after cocaine sensitization, although the S/I ratio was not altered. Together, these results demonstrate differential cocaine effects on HCN2 and HCN4 protein expression profiles and therefore suggest a diverse Ih modulation of cellular activity during cocaine addictive processes.


Subject(s)
Cerebral Cortex/metabolism , Cocaine/pharmacology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/biosynthesis , Limbic System/metabolism , Potassium Channels/biosynthesis , Animals , Cerebral Cortex/drug effects , Gene Expression , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Limbic System/drug effects , Male , Potassium Channels/genetics , Protein Subunits/biosynthesis , Protein Subunits/genetics , Random Allocation , Rats , Rats, Sprague-Dawley
7.
Neuroscience ; 392: 129-140, 2018 11 10.
Article in English | MEDLINE | ID: mdl-30243909

ABSTRACT

Chronic cocaine exposure produces enduring neuroadaptations in the brain's reward system. Persistence of early cocaine-evoked neuroadaptations in the ventral tegmental area (VTA) is necessary for later synaptic alterations in the nucleus accumbens (NAc), suggesting a temporal sequence of neuroplastic changes between these two areas. However, the molecular nature of the signal that mediates this sequential event is unknown. Here we used the behavioral sensitization model and the aPKC inhibitor of late-phase LTP maintenance, ZIP, to investigate if a persistent increase in AMPA/NMDA ratio plays a role in the molecular mechanism that allows VTA neuroadaptations to induce changes in the NAc. Results showed that intra-VTA ZIP microinfusion successfully blocked cocaine-evoked synaptic enhancement in the VTA and the expected AMPA/NMDA ratio decrease in the NAc following cocaine sensitization. ZIP microinfusions also blocked the expected AMPA/NMDA ratio increase in the NAc following cocaine withdrawal. These results suggest that a persistent increase in AMPA/NMDA ratio, mediated by aPKCs, could be the molecular signal that enables the VTA to elicit synaptic alterations in the NAc following cocaine administration.


Subject(s)
Cocaine/administration & dosage , Long-Term Potentiation/drug effects , Nucleus Accumbens/metabolism , Protein Kinase C/metabolism , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Ventral Tegmental Area/metabolism , Animals , Behavior, Animal/drug effects , Male , Nucleus Accumbens/drug effects , Rats, Sprague-Dawley , Ventral Tegmental Area/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...