Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
2.
Parasit Vectors ; 17(1): 40, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287455

ABSTRACT

BACKGROUND: The emergence of diseases of public health concern is enhanced by factors associated with global change, such as the introduction of invasive species. The Asian tiger mosquito (Aedes albopictus), considered a competent vector of different viruses and parasites, has been successfully introduced into Europe in recent decades. Molecular screening of parasites in mosquitoes (i.e. molecular xenomonitoring) is essential to understand the potential role of different native and invasive mosquito species in the local circulation of vector-borne parasites affecting both humans and wildlife. METHODS: The presence of avian Plasmodium parasites was molecularly tested in mosquitoes trapped in five localities with different environmental characteristics in southern Spain from May to November 2022. The species analyzed included the native Culex pipiens and Culiseta longiareolata and the invasive Ae. albopictus. RESULTS: Avian Plasmodium DNA was only found in Cx. pipiens with 31 positive out of 165 mosquito pools tested. None of the Ae. albopictus or Cs. longiareolata pools were positive for avian malaria parasites. Overall, eight Plasmodium lineages were identified, including a new lineage described here. No significant differences in parasite prevalence were found between localities or sampling sessions. CONCLUSIONS: Unlike the invasive Ae. albopictus, Cx. pipiens plays a key role in the transmission of avian Plasmodium in southern Spain. However, due to the recent establishment of Ae. albopictus in the area, further research on the role of this species in the local transmission of vector-borne pathogens with different reservoirs is required.


Subject(s)
Aedes , Culex , Malaria, Avian , Plasmodium , Animals , Humans , Spain/epidemiology , Mosquito Vectors/parasitology , Aedes/parasitology , Plasmodium/genetics , Culex/parasitology , Malaria, Avian/parasitology
3.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37895851

ABSTRACT

Leishmaniasis and Chagas disease are still considered neglected illnesses due to the lack of investment in research, despite the fact that almost one million new cases are reported every year. Four 7-oxo-5-phenyl-1,2,4-triazolo[1,5-a]pyrimidine (HftpO) first-row transition complexes (Cu, Co, Ni, Zn) have been studied for the first time in vitro against five different species of Leishmania spp. (L. infantum, L. braziliensis, L. donovani, L. peruviana and L. mexicana) as well as Trypanosoma cruzi, showing higher efficacy than the reference commercial drugs. UV and luminescence properties were also evaluated. As a proof of concept, anchoring of a model high-effective-metal complex as an antiparasitic agent on silica nanoparticles was carried out for the first time, and drug-release behaviour was evaluated, assessing this new approach for drug vehiculation.

4.
Vet Parasitol Reg Stud Reports ; 44: 100911, 2023 09.
Article in English | MEDLINE | ID: mdl-37652628

ABSTRACT

Trypanosoma cruzi, the causal agent of American trypanosomiasis, and Leishmania spp., the causal agents of Leishmaniasis, are prevalent in more than 20 American countries, including Mexico. Dogs have been reported as incidental hosts for both parasites and may be helpful as transmission sentinels. We surveyed the dog population in a rural locality of the Merida municipality in Yucatan, Mexico, to evaluate the seroreactivity against T. cruzi and Leishmania spp. using two antigens, parasite homogenate (H) and iron superoxide dismutase extract (FeSODe), with two serological techniques (ELISA and Western Blot). Our study found that 3.33% of the tested dogs were seroreactive to T. cruzi using ELISA-H, and 29.5% were seroreactive to FeSODe antigen, with a 94.4% consistency between the two tests. Similarly, for L. mexicana, 1.6% were seroreactive using ELISA-H, and 9.8% were seroreactive using ELISA-FeSODe, with an 83.3% consistency between tests. For L. braziliensis, no dogs were seroreactive using ELISA-H, but 16.4% were seroreactive using ELISA-FeSODe, with a 90% consistency between tests. Finally, for L. infantum, 4.9% were seropositive using ELISA-H, and 6.6% were seropositive using ELISA-FeSODe, with a 75% consistency between tests. These results show noticeable evidence of exposure of dogs to trypanosomatid parasites and highlight the potential disease risk for the people and their companion animals in the region.


Subject(s)
Chagas Disease , Leishmania , Parasites , Trypanosoma cruzi , Animals , Mexico/epidemiology , Chagas Disease/epidemiology , Chagas Disease/veterinary
5.
Pharmaceutics ; 15(3)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36986853

ABSTRACT

Due to the urgent need for finding effective and free of secondary effect treatments for every clinical form of Leishmaniasis, a series of synthetic xylene, pyridine and, pyrazole azamacrocycles were tested against three Leishmania species. A total of 14 compounds were tested against J774.2 macrophage cells which were models for host cells, and against promastigote and amastigote forms of each studied Leishmania parasite. Amongst these polyamines, one proved effective against L. donovani, another one for L. braziliensis and L. infantum, and another one was selective solely for L. infantum. These compounds showed leishmanicidal activity and reduced parasite infectivity and dividing ability. Action mechanism studies gave a hint that compounds were active against Leishmania due to their ability to alter parasite metabolic pathways and reduce (except Py33333) parasitic Fe-SOD activity.

6.
Acta Trop ; 236: 106679, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36096184

ABSTRACT

Trypanosoma cruzi, the causative agent of Chagas disease (CD), is a genuine parasite with tremendous genetic diversity and a complex life cycle. Scientists have studied this disease for more than 100 years, and CD drug discovery has been a mainstay due to the absence of an effective treatment. Technical advances in several areas have contributed to a better understanding of the complex biology and life cycle of this parasite, with the aim of designing the ideal profile of both drug and therapeutic options to treat CD. Here, we present the T. cruzi Arequipa strain (MHOM/Pe/2011/Arequipa) as an interesting model for CD drug discovery. We characterized acute-phase parasitaemia and chronic-phase tropism in BALB/c mice and determined the in vitro and in vivo benznidazole susceptibility profile of the different morphological forms of this strain. The tropism of this strain makes it an interesting model for the screening of new compounds with a potential anti-Chagas profile for the treatment of this disease.


Subject(s)
Chagas Disease , Nitroimidazoles , Parasites , Trypanocidal Agents , Trypanosoma cruzi , Animals , Chagas Disease/drug therapy , Chagas Disease/parasitology , Drug Discovery , Life Cycle Stages , Mice , Mice, Inbred BALB C , Nitroimidazoles/pharmacology , Nitroimidazoles/therapeutic use , Parasitemia/parasitology , Trypanocidal Agents/therapeutic use , Trypanosoma cruzi/genetics
7.
ACS Infect Dis ; 8(6): 1107-1115, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35652513

ABSTRACT

Chagas disease (CD) is a parasitic, systemic, chronic, and often fatal illness caused by infection with the protozoan Trypanosoma cruzi. The World Health Organization classifies CD as the most prevalent of poverty-promoting neglected tropical diseases, the most important parasitic one, and the third most infectious disease in Latin America. Currently, CD is a global public health issue that affects 6-8 million people. However, the current approved treatments are limited to two nitroheterocyclic drugs developed more than 50 years ago. Many efforts have been made in recent decades to find new therapies, but our limited understanding of the infection process, pathology development, and long-term nature of this disease has made it impossible to develop new drugs, effective treatment, or vaccines. This Review aims to provide a comprehensive update on our understanding of the current life cycle, new morphological forms, and genetic diversity of T. cruzi, as well as identify intervention points in the life cycle where new drugs and treatments could achieve a parasitic cure.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Animals , Chagas Disease/drug therapy , Chagas Disease/parasitology , Humans , Life Cycle Stages
8.
Acta Trop ; 232: 106538, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35618027

ABSTRACT

Amoebas of the genus Acanthamoeba are distributed worldwide, including species with a high pathogenic capacity for humans. In a similar way to what occurs with other parasitic protozoa, the available treatments show variable effectiveness in addition to high toxicity, which demands the development of new treatments. Positive results of 5-nitroindazole derivatives against several protozoa parasites suggest that these compounds may be a promising tool for the development of efficient antiparasitic drugs. In the present work we have evaluated the in vitro activity of ten 5-nitroindazole derivatives against Acanthamoeba castellanii trophozoites and cysts. To that end, AlamarBlue Assay Reagent® was used to determine the activity against trophozoites compared to the reference drug chlorhexidine digluconate. Cytotoxicity of the compounds was evaluated using Vero cells. The activity on cysts was evaluated by light microscopy and using a Neubauer chamber to quantifying cysts and presence of trophozoites, as an indication of cyst. Our results showed the effectiveness of the 5-nitroindazole derivatives tested against both trophozoites and cysts of A. castellani highlighting 5-nitroindazole derivative 8 which showed a 80% activity on cysts, which is higher than that of the reference drug. Moreover, 5-nitroindazole derivatives 8, 9 and 10 were more effective on trophozoites than the reference drug showing IC50 values lower than 5 µM. Taking together these results, these 5-nitroindazole derivatives specially compound 8, might be a promising alternative for the development of more efficient treatments against A. castellani infection.


Subject(s)
Acanthamoeba castellanii , Animals , Chlorocebus aethiops , Humans , Indazoles/pharmacology , Trophozoites , Vero Cells
9.
Pharmaceutics ; 15(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36678771

ABSTRACT

Chagas disease (CD) is a tropical and potentially fatal infection caused by Trypanosoma cruzi. Although CD was limited to Latin America as a silent disease, CD has become widespread as a result of globalization. Currently, 6-8 million people are infected worldwide, and no effective treatment is available. Here, we identify new effective agents against T. cruzi. In short, 16 aryl polyamines were screened in vitro against different T. cruzi strains, and lead compounds were evaluated in vivo after oral administration in both the acute and chronic infections. The mode of action was also evaluated at the energetic level, and its high activity profile could be ascribed to a mitochondria-dependent bioenergetic collapse and redox stress by inhibition of the Fe-SOD enzyme. We present compound 15 as a potential compound that provides a step forward for the development of new agents to combat CD.

10.
ACS Infect Dis ; 7(12): 3168-3181, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34734686

ABSTRACT

Leishmaniasis is one of the world's most neglected diseases with a worldwide prevalence of 12 million people. There are no effective human vaccines for its prevention, and outdated drugs hamper treatment. Therefore, research aimed at developing new therapeutic tools to fight leishmaniasis remains a crucial goal today. With this purpose in mind, here, we present 10 new compounds made up by linking alkylated ethylenediamine units to pyridine or quinoline heterocycles with promising in vitro and in vivo efficacy against promastigote and amastigote forms of Leishmania infantum, Leishmania donovani, and Leishmania braziliensis species. Three compounds (2, 4, and 5) showed a selectivity index much higher in the amastigote form than the reference drug glucantime. These three derivatives affected the parasite infectivity rates; the result was lower parasite infectivity rates than glucantime tested at an IC25 dose. In addition, these derivatives were substantially more active against the three Leishmania species tested than glucantime. The mechanism of action of these compounds has been studied, showing alterations in glucose catabolism and leading to greater levels of iron superoxide dismutase inhibition. These molecules could be potential candidates for leishmaniasis chemotherapy due to their effectiveness and their ready synthesis.


Subject(s)
Antiprotozoal Agents , Leishmania braziliensis , Leishmania infantum , Leishmaniasis , Antiprotozoal Agents/pharmacology , Diamines/pharmacology , Humans , Leishmaniasis/drug therapy
11.
ChemMedChem ; 16(23): 3600-3614, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34665510

ABSTRACT

Leishmaniasis and Chagas diseases are two of the most important parasitic diseases in the world. Both belong to the category of Neglected Tropical Diseases, and they cannot be prevented by vaccination. Their treatments are founded in outdated drugs that possess many pernicious side-effects and they're not easy to administer. With the aim of discovering new compounds that could serve as anti-trypanosomal drugs, an antiparasitic study of a synthetic compound family has been conducted. A series of new 1,4-bis(alkylamino)- and 1-alkylamino-4-chloroazine and benzoazine derivatives 1-4 containing imidazole rings have been synthesized and identified. Their structures showed a possible interest based on previous work. Their in vitro anti-Leishmania infantum, anti-L. braziliensis, anti-L. donovani and anti-T. cruzi activity were tested, as well as the inhibition of Fe-SOD enzymes. It was found that some of them exhibited quite relevant values indicative of being worthy of future more detailed studies, as most of them showed activity to more than only one parasite species, especially compound 3 c was active for the three studied Leishmania species and also for T. cruzi, which is a very interesting trait as it covers a wide spectrum.


Subject(s)
Imidazoles/pharmacology , Phthalazines/pharmacology , Pyridazines/pharmacology , Trypanocidal Agents/pharmacology , Animals , Chlorocebus aethiops , Imidazoles/chemical synthesis , Imidazoles/toxicity , Leishmania braziliensis/drug effects , Leishmania donovani/drug effects , Leishmania infantum/drug effects , Parasitic Sensitivity Tests , Phthalazines/chemical synthesis , Phthalazines/toxicity , Pyridazines/chemical synthesis , Pyridazines/toxicity , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/toxicity , Trypanosoma cruzi/drug effects , Vero Cells
12.
Parasitology ; 148(11): 1392-1400, 2021 09.
Article in English | MEDLINE | ID: mdl-34162452

ABSTRACT

Acanthamoeba spp. are widely distributed in the environment and cause serious infections in humans. Treatment of Acanthamoeba infections is very challenging and not always effective which requires the development of more efficient drugs against Acanthamoeba spp. The purpose of the present study was to test medicinal plants that may be useful in the treatment of Acanthamoeba spp. Here we evaluated the trophozoital and cysticidal activity of 13 flavonoid glycosides isolated from Delphinium gracile, D. staphisagria, Consolida oliveriana and from Aconitum napellus subsp. Lusitanicum against the amoeba Acanthamoeba castellanii. AlamarBlue Assay Reagent® was used to determine the activity against trophozoites of A. castellanii, and cytotoxic using Vero cells. Cysticidal activity was assessed on treated cysts by light microscopy using a Neubauer chamber to quantify cysts and trophozoites. Flavonoids 1, 2, 3 and 4 showed higher trophozoital activity and selectivity indexes than the reference drug chlorhexidine digluconate. In addition, flavonoid 2 showed 100% cysticidal activity at a concentration of 50 µm, lower than those of the reference drug and flavonoid 3 (100 µm). These results suggest that flavonoids 2 and 3 might be used for the development of novel therapeutic approaches against Acanthamoeba infections after satisfactory in vivo evaluations.


Subject(s)
Acanthamoeba/drug effects , Aconitum/chemistry , Delphinium/chemistry , Glycosides/pharmacology , Plant Extracts/pharmacology , Ranunculaceae/chemistry , Acanthamoeba/growth & development , Animals , Chlorocebus aethiops , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Flavonoids/toxicity , Glycosides/chemistry , Glycosides/isolation & purification , Glycosides/toxicity , Inhibitory Concentration 50 , Molecular Structure , Plant Extracts/isolation & purification , Trophozoites/drug effects , Trophozoites/growth & development , Vero Cells/drug effects
13.
Pharmaceuticals (Basel) ; 14(5)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062791

ABSTRACT

Chagas disease is usually caused by tropical infection with the insect-transmitted protozoan Trypanosoma cruzi. Currently, Chagas disease is a major public health concern worldwide due to globalization, and there are no treatments neither vaccines because of the long-term nature of the disease and its complex pathology. Current treatments are limited to two obsolete drugs, benznidazole and nifurtimox, which lead to serious drawbacks. Taking into account the urgent need for strict research efforts to find new therapies, here, we describe the in vitro and in vivo trypanocidal activity of a library of selected forty-eight selenocyanate and diselenide derivatives that exhibited leishmanicidal properties. The inclusion of selenium, an essential trace element, was due to the well-known extensive pharmacological activities for selenium compounds including parasitic diseases as T. cruzi. Here we present compound 8 as a potential compound that exhibits a better profile than benznidazole both in vitro and in vivo. It shows a fast-acting behaviour that could be attributed to its mode of action: it acts in a mitochondrion-dependent manner, causing cell death by bioenergetic collapse. This finding provides a step forward for the development of a new antichagasic agent.

14.
ACS Infect Dis ; 7(6): 1727-1738, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33871252

ABSTRACT

Chagas disease is a tropical infection caused by the protozoan parasite Trypanosoma cruzi and a global public health concern. It is a paradigmatic example of a chronic disease without an effective treatment. Current treatments targeting T. cruzi are limited to two obsolete nitroheterocyclic drugs, benznidazole and nifurtimox, which lead to serious drawbacks. Hence, new, more effective, safer, and affordable drugs are urgently needed. Selenium and their derivatives have emerged as an interesting strategy for the treatment of different prozotoan diseases, such as African trypanosomiasis, leishmaniasis, and malaria. In the case of Chagas disease, diverse selenium scaffolds have been reported with antichagasic activity in vitro and in vivo. On the basis of these premises, we describe the in vitro and in vivo trypanocidal activity of 41 selenocompounds against the three morphological forms of different T. cruzi strains. For the most active selenocompounds, their effect on the metabolic and mitochondrial levels and superoxide dismutase enzyme inhibition capacity were measured in order to determine the possible mechanism of action. Derivative 26, with a selenocyanate motif, fulfills the most stringent in vitro requirements for potential antichagasic agents and exhibits a better profile than benznidazole in vivo. This finding provides a step forward for the development of a new antichagasic agent.


Subject(s)
Chagas Disease , Pharmaceutical Preparations , Selenium , Trypanocidal Agents , Trypanosoma cruzi , Chagas Disease/drug therapy , Humans , Selenium/therapeutic use , Trypanocidal Agents/pharmacology
15.
J Nat Prod ; 83(12): 3571-3583, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33253573

ABSTRACT

The life-long and life-threatening Chagas disease is one of the most neglected tropical diseases caused by the protozoan parasite Trypanosoma cruzi. It is a major public health problem in Latin America, as six to seven million people are infected, being the principal cause of mortality in many endemic regions. Moreover, Chagas disease has become widespread due to migrant populations. Additionally, there are no vaccines nor effective treatments to fight the disease because of its long-term nature and complex pathology. Therefore, these facts emphasize how crucial the international effort for the development of new treatments against Chagas disease is. Here, we present the in vitro and in vivo trypanocidal activity of some oxygenated abietane diterpenoids and related compounds. The 1,4-benzoquinone 15, not yet reported, was identified as a fast-acting trypanocidal drug with efficacy against different strains in vitro and higher activity and lower toxicity than benznidazole in both phases of murine Chagas disease. The mode of action was also evaluated, suggesting that quinone 15 kills T. cruzi by inducing mitochondrion-dependent necrosis through a bioenergetics collapse caused by a mitochondrial membrane depolarization and iron-containing superoxide dismutase inhibition. Therefore, the abietane 1,4-benzoquinone 15 can be considered as a new candidate molecule for the development of an appropriate and commercially accessible anti-Chagas drug.


Subject(s)
Abietanes/pharmacology , Mitochondria/metabolism , Trypanocidal Agents/pharmacology , Abietanes/chemistry , Animals , Humans , Mice , Necrosis
16.
Parasitol Res ; 119(9): 2943-2954, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32607710

ABSTRACT

Trypanosomatidae is a family of unicellular parasites belonging to the phylum Euglenozoa, which are causative agents in high impact human diseases such as Leishmaniasis, Chagas disease and African sleeping sickness. The impact on human health and local economies, together with a lack of satisfactory chemotherapeutic treatments and effective vaccines, justifies stringent research efforts to search for new disease therapies. Here, we present in vitro trypanocidal activity data and mode of action data, repositioning leishmanicidal [1,2,3]Triazolo[1,5-a]pyridinium salts against Trypanosoma cruzi, the aetiological agent of Chagas disease. This disease is one of the most neglected tropical diseases and is a major public health issue in Central and South America. The disease affects approximately 6-7 million people and is widespread due to increased migratory movements. We screened a suite of leishmanicidal [1,2,3]Triazolo[1,5-a]pyridinium salt compounds, of which compounds 13, 20 and 21 were identified as trypanocidal drugs. These compounds caused cell death in a mitochondrion-dependent manner through a bioenergetic collapse. Moreover, compounds 13 and 20 showed a remarkable inhibition of iron superoxide dismutase activity of T. cruzi, a key enzyme in the protection from the damage produced by oxidative stress.


Subject(s)
Chagas Disease/drug therapy , Pyridinium Compounds/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cell Death/drug effects , Drug Repositioning , Humans , Leishmaniasis/drug therapy , Mitochondrial Membranes/metabolism , Oxidative Stress/drug effects , South America , Superoxide Dismutase/metabolism , Trypanosomiasis, African/drug therapy
17.
J Antimicrob Chemother ; 75(6): 1537-1545, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32129856

ABSTRACT

OBJECTIVES: We report the in vivo trypanocidal activity of the bacteriocin AS-48 (lacking toxicity), which is produced by Enterococcus faecalis, against the flagellated protozoan Trypanosoma cruzi, the aetiological agent of Chagas' disease. METHODS: We determined the in vivo activity of AS-48 against the T. cruzi Arequipa strain in BALB/c mice (in both acute and chronic phases of Chagas' disease). We evaluated the parasitaemia, the reactivation of parasitaemia after immunosuppression and the nested parasites in the chronic phase by PCR in target tissues. RESULTS: AS-48 reduced the parasitaemia profile in acute infection and showed a noteworthy reduction in the parasitic load in chronic infection after immunosuppression according to the results obtained by PCR (double-checking to demonstrate cure). CONCLUSIONS: AS-48 is a promising alternative that provides a step forward in the development of a new therapy against Chagas' disease.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Animals , Chagas Disease/drug therapy , Mice , Mice, Inbred BALB C , Parasite Load , Parasitemia/drug therapy
18.
Bioorg Chem ; 92: 103274, 2019 11.
Article in English | MEDLINE | ID: mdl-31539744

ABSTRACT

Leishmaniasis is a widespread neglected tropical disease complex that is responsible of one million new cases per year. Current treatments are outdated and pose many problems that new drugs need to overcome. With the goal of developing new, safe, and affordable drugs, we have studied the in vitro activity of 12 different 5-nitroindazole derivatives that showed previous activity against different strains of Trypanosoma cruzi in a previous work. T. cruzi belongs to the same family as Leishmania spp., and treatments for the disease it produces also needs renewal. Among the derivatives tested, compounds 1, 2, 9, 10, 11, and 12 showed low J774.2 macrophage toxicity, while their effect against both intracellular and extracellular forms of the studied parasites was higher than the ones found for the reference drug Meglumine Antimoniate (Glucantime®). In addition, their Fe-SOD inhibitory effect, the infection rates, metabolite alteration, and mitochondrial membrane potential of the parasites treated with the selected drugs were studied in order to gain insights into the action mechanism, and the results of these tests were more promising than those found with glucantime, as the leishmanicidal effect of these new drug candidates was higher. The promising results are encouraging to test these derivatives in more complex studies, such as in vivo studies and other experiments that could find out the exact mechanism of action.


Subject(s)
Alcohols/pharmacology , Antiprotozoal Agents/pharmacology , Enzyme Inhibitors/pharmacology , Ethylamines/pharmacology , Indazoles/pharmacology , Leishmania/drug effects , Alcohols/chemistry , Alcohols/metabolism , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/metabolism , Cell Line , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Ethylamines/chemistry , Ethylamines/metabolism , Indazoles/chemistry , Indazoles/metabolism , Macrophages/drug effects , Macrophages/parasitology , Membrane Potential, Mitochondrial/drug effects , Mice , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Superoxide Dismutase/antagonists & inhibitors , Superoxide Dismutase/metabolism
19.
J Adv Res ; 20: 129-139, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31360546

ABSTRACT

The in vitro antimicrobial potency of the bacteriocin AS-48 is well documented, but its clinical application requires investigation, as its toxicity could be different in in vitro (haemolytic and antibacterial activity in blood and cytotoxicity towards normal human cell lines) and in vivo (e.g. mice and zebrafish embryos) models. Overall, the results obtained are promising. They reveal the negligible propensity of AS-48 to cause cell death or impede cell growth at therapeutic concentrations (up to 27 µM) and support the suitability of this peptide as a potential therapeutic agent against several microbial infections, due to its selectivity and potency at low concentrations (in the range of 0.3-8.9 µM). In addition, AS-48 exhibits low haemolytic activity in whole blood and does not induce nitrite accumulation in non-stimulated RAW macrophages, indicating a lack of pro-inflammatory effects. The unexpected heightened sensitivity of zebrafish embryos to AS-48 could be due to the low differentiation state of these cells. The low cytotoxicity of AS-48, the absence of lymphocyte proliferation in vivo after skin sensitization in mice, and the lack of toxicity in a murine model support the consideration of the broad spectrum antimicrobial peptide AS-48 as a promising therapeutic agent for the control of a vast array of microbial infections, in particular, those involved in skin and soft tissue diseases.

20.
Bioorg Med Chem ; 27(17): 3902-3917, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31345745

ABSTRACT

The current chemotherapy against Chagas disease is inadequate and insufficient. A series of ten Mannich base-type derivatives have been synthesized to evaluate their in vitro antichagasic activity. After a preliminary screening, compounds 7 and 9 were subjected to in vivo assays in a murine model. Both compounds caused a substantial decrease in parasitemia in the chronic phase, which was an even better result than that of the reference drug benznidazole. In addition, compound 9 also showed better antichagasic activity during the acute phase. Moreover, metabolite excretion, effect on mitochondrial membrane potential and the inhibition of superoxide dismutase (SOD) studies were also performed to identify their possible mechanism of action. Finally, docking studies proposed a binding mode of the Fe-SOD enzyme similar to our previous series, which validated our design strategy. Therefore, the results suggest that these compounds should be considered for further preclinical evaluation as antichagasic agents.


Subject(s)
Chagas Disease/drug therapy , Mannich Bases/pharmacology , Superoxide Dismutase/antagonists & inhibitors , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cells, Cultured , Chagas Disease/metabolism , Chlorocebus aethiops , Cyclophosphamide/administration & dosage , Cyclophosphamide/pharmacology , Dose-Response Relationship, Drug , Humans , Injections, Intraperitoneal , Mannich Bases/chemical synthesis , Mannich Bases/chemistry , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Superoxide Dismutase/metabolism , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanosoma cruzi/metabolism , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...