Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nat Cancer ; 4(3): 344-364, 2023 03.
Article in English | MEDLINE | ID: mdl-36732635

ABSTRACT

Metabolic rewiring is often considered an adaptive pressure limiting metastasis formation; however, some nutrients available at distant organs may inherently promote metastatic growth. We find that the lung and liver are lipid-rich environments. Moreover, we observe that pre-metastatic niche formation increases palmitate availability only in the lung, whereas a high-fat diet increases it in both organs. In line with this, targeting palmitate processing inhibits breast cancer-derived lung metastasis formation. Mechanistically, breast cancer cells use palmitate to synthesize acetyl-CoA in a carnitine palmitoyltransferase 1a-dependent manner. Concomitantly, lysine acetyltransferase 2a expression is promoted by palmitate, linking the available acetyl-CoA to the acetylation of the nuclear factor-kappaB subunit p65. Deletion of lysine acetyltransferase 2a or carnitine palmitoyltransferase 1a reduces metastasis formation in lean and high-fat diet mice, and lung and liver metastases from patients with breast cancer show coexpression of both proteins. In conclusion, palmitate-rich environments foster metastases growth by increasing p65 acetylation, resulting in a pro-metastatic nuclear factor-kappaB signaling.


Subject(s)
Lysine Acetyltransferases , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Carnitine O-Palmitoyltransferase/metabolism , Acetylation , Acetyl Coenzyme A/metabolism , Palmitates , Lysine Acetyltransferases/metabolism
4.
Nature ; 610(7930): 190-198, 2022 10.
Article in English | MEDLINE | ID: mdl-36131018

ABSTRACT

Although melanoma is notorious for its high degree of heterogeneity and plasticity1,2, the origin and magnitude of cell-state diversity remains poorly understood. Equally, it is unclear whether growth and metastatic dissemination are supported by overlapping or distinct melanoma subpopulations. Here, by combining mouse genetics, single-cell and spatial transcriptomics, lineage tracing and quantitative modelling, we provide evidence of a hierarchical model of tumour growth that mirrors the cellular and molecular logic underlying the cell-fate specification and differentiation of the embryonic neural crest. We show that tumorigenic competence is associated with a spatially localized perivascular niche, a phenotype acquired through an intercellular communication pathway established by endothelial cells. Consistent with a model in which only a fraction of cells are fated to fuel growth, temporal single-cell tracing of a population of melanoma cells with a mesenchymal-like state revealed that these cells do not contribute to primary tumour growth but, instead, constitute a pool of metastatic initiating cells that switch cell identity while disseminating to secondary organs. Our data provide a spatially and temporally resolved map of the diversity and trajectories of melanoma cell states and suggest that the ability to support growth and metastasis are limited to distinct pools of cells. The observation that these phenotypic competencies can be dynamically acquired after exposure to specific niche signals warrant the development of therapeutic strategies that interfere with the cancer cell reprogramming activity of such microenvironmental cues.


Subject(s)
Cell Proliferation , Melanoma , Neoplasm Metastasis , Animals , Cell Communication , Cell Differentiation , Cell Lineage , Cell Tracking , Cellular Reprogramming , Endothelial Cells , Melanoma/genetics , Melanoma/pathology , Mesoderm/pathology , Mice , Neoplasm Metastasis/pathology , Neural Crest/embryology , Phenotype , Single-Cell Analysis , Transcriptome , Tumor Microenvironment
5.
Br J Haematol ; 199(4): 482-495, 2022 11.
Article in English | MEDLINE | ID: mdl-35753998

ABSTRACT

The importance of predisposition to leukaemia in clinical practice is being increasingly recognized. This is emphasized by the establishment of a novel WHO disease category in 2016 called "myeloid neoplasms with germline predisposition". A major syndrome within this group is GATA2 deficiency, a heterogeneous immunodeficiency syndrome with a very high lifetime risk to develop myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). GATA2 deficiency has been identified as the most common hereditary cause of MDS in adolescents with monosomy 7. Allogenic haematopoietic stem cell transplantation is the only curative option; however, chances of survival decrease with progression of immunodeficiency and MDS evolution. Penetrance and expressivity within families carrying GATA2 mutations is often variable, suggesting that co-operating extrinsic events are required to trigger the disease. Predictive tools are lacking, and intrafamilial heterogeneity is poorly understood; hence there is a clear unmet medical need. On behalf of the ERAPerMed GATA2 HuMo consortium, in this review we describe the genetic, clinical, and biological aspects of familial GATA2-related MDS, highlighting the importance of developing robust disease preclinical models to improve early detection and clinical decision-making of GATA2 carriers.


Subject(s)
GATA2 Deficiency , Hematopoietic Stem Cell Transplantation , Immunologic Deficiency Syndromes , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Myeloproliferative Disorders , Humans , Disease Susceptibility , GATA2 Deficiency/genetics , GATA2 Deficiency/therapy , GATA2 Transcription Factor/genetics , Immunologic Deficiency Syndromes/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/therapy , Myeloproliferative Disorders/complications
6.
EMBO Mol Med ; 14(3): e15295, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35156321

ABSTRACT

Lineage dedifferentiation toward a mesenchymal-like state displaying myofibroblast and fibrotic features is a common mechanism of adaptive and acquired resistance to targeted therapy in melanoma. Here, we show that the anti-fibrotic drug nintedanib is active to normalize the fibrous ECM network, enhance the efficacy of MAPK-targeted therapy, and delay tumor relapse in a preclinical model of melanoma. Acquisition of this resistant phenotype and its reversion by nintedanib pointed to miR-143/-145 pro-fibrotic cluster as a driver of this mesenchymal-like phenotype. Upregulation of the miR-143/-145 cluster under BRAFi/MAPKi therapy was observed in melanoma cells in vitro and in vivo and was associated with an invasive/undifferentiated profile. The 2 mature miRNAs generated from this cluster, miR-143-3p and miR-145-5p, collaborated to mediate transition toward a drug-resistant undifferentiated mesenchymal-like state by targeting Fascin actin-bundling protein 1 (FSCN1), modulating the dynamic crosstalk between the actin cytoskeleton and the ECM through the regulation of focal adhesion dynamics and mechanotransduction pathways. Our study brings insights into a novel miRNA-mediated regulatory network that contributes to non-genetic adaptive drug resistance and provides proof of principle that preventing MAPKi-induced pro-fibrotic stromal response is a viable therapeutic opportunity for patients on targeted therapy.


Subject(s)
Indoles/pharmacology , Melanoma , MicroRNAs , Carrier Proteins/metabolism , Cell Line, Tumor , Humans , Mechanotransduction, Cellular , Melanoma/drug therapy , Melanoma/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Microfilament Proteins/metabolism , Neoplasm Recurrence, Local
7.
Cancer Cell ; 39(8): 1135-1149.e8, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34143978

ABSTRACT

Therapy resistance arises from heterogeneous drug-tolerant persister cells or minimal residual disease (MRD) through genetic and nongenetic mechanisms. A key question is whether specific molecular features of the MRD ecosystem determine which of these two distinct trajectories will eventually prevail. We show that, in melanoma exposed to mitogen-activated protein kinase therapeutics, emergence of a transient neural crest stem cell (NCSC) population in MRD concurs with the development of nongenetic resistance. This increase relies on a glial cell line-derived neurotrophic factor-dependent signaling cascade, which activates the AKT survival pathway in a focal adhesion kinase (FAK)-dependent manner. Ablation of the NCSC population through FAK inhibition delays relapse in patient-derived tumor xenografts. Strikingly, all tumors that ultimately escape this treatment exhibit resistance-conferring genetic alterations and increased sensitivity to extracellular signal-regulated kinase inhibition. These findings identify an approach that abrogates the nongenetic resistance trajectory in melanoma and demonstrate that the cellular composition of MRD deterministically imposes distinct drug resistance evolutionary paths.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/physiology , Melanoma/drug therapy , Melanoma/genetics , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Focal Adhesion Kinase 1/antagonists & inhibitors , Focal Adhesion Kinase 1/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Humans , Imidazoles/pharmacology , Melanoma/pathology , Mice, SCID , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Neoplasm Recurrence, Local/genetics , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Neural Crest/pathology , Oximes/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Pyridones/pharmacology , Pyrimidinones/pharmacology , Xenograft Model Antitumor Assays
8.
EMBO Mol Med ; 13(5): e13466, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33724679

ABSTRACT

Most genetic alterations that drive melanoma development and resistance to targeted therapy have been uncovered. In contrast, and despite their increasingly recognized contribution, little is known about the non-genetic mechanisms that drive these processes. Here, we performed in vivo gain-of-function CRISPR screens and identified SMAD3, BIRC3, and SLC9A5 as key actors of BRAFi resistance. We show that their expression levels increase during acquisition of BRAFi resistance and remain high in persister cells and during relapse. The upregulation of the SMAD3 transcriptional activity (SMAD3-signature) promotes a mesenchymal-like phenotype and BRAFi resistance by acting as an upstream transcriptional regulator of potent BRAFi-resistance genes such as EGFR and AXL. This SMAD3-signature predicts resistance to both current melanoma therapies in different cohorts. Critically, chemical inhibition of SMAD3 may constitute amenable target for melanoma since it efficiently abrogates persister cells survival. Interestingly, decrease of SMAD3 activity can also be reached by inhibiting the Aryl hydrocarbon Receptor (AhR), another druggable transcription factor governing SMAD3 expression level. Our work highlights novel drug vulnerabilities that can be exploited to develop long-lasting antimelanoma therapies.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Cell Line, Tumor , Cell Plasticity , Clustered Regularly Interspaced Short Palindromic Repeats , Drug Resistance, Neoplasm , Humans , Melanoma/genetics , Neoplasm Recurrence, Local , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics
9.
J Cell Biol ; 219(9)2020 09 07.
Article in English | MEDLINE | ID: mdl-32858747

ABSTRACT

Cancer is characterized by genomic instability leading to deletion or amplification of oncogenes or tumor suppressors. However, most of the altered regions are devoid of known cancer drivers. Here, we identify lncRNAs frequently lost or amplified in cancer. Among them, we found amplified lncRNA associated with lung cancer-1 (ALAL-1) as frequently amplified in lung adenocarcinomas. ALAL-1 is also overexpressed in additional tumor types, such as lung squamous carcinoma. The RNA product of ALAL-1 is able to promote the proliferation and tumorigenicity of lung cancer cells. ALAL-1 is a TNFα- and NF-κB-induced cytoplasmic lncRNA that specifically interacts with SART3, regulating the subcellular localization of the protein deubiquitinase USP4 and, in turn, its function in the cell. Interestingly, ALAL-1 expression inversely correlates with the immune infiltration of lung squamous tumors, while tumors with ALAL-1 amplification show lower infiltration of several types of immune cells. We have thus unveiled a pro-oncogenic lncRNA that mediates cancer immune evasion, pointing to a new target for immune potentiation.


Subject(s)
DNA Copy Number Variations/genetics , Immune Evasion/genetics , Lung Neoplasms/genetics , RNA, Long Noncoding/genetics , A549 Cells , Adenocarcinoma of Lung/genetics , Antigens, Neoplasm/genetics , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , NF-kappa B/genetics , Oncogenes/genetics , Ubiquitin-Specific Proteases/genetics
10.
Genome Res ; 29(10): 1659-1672, 2019 10.
Article in English | MEDLINE | ID: mdl-31515287

ABSTRACT

Induction and reversal of chromatin silencing is critical for successful development, tissue homeostasis, and the derivation of induced pluripotent stem cells (iPSCs). X-Chromosome inactivation (XCI) and reactivation (XCR) in female cells represent chromosome-wide transitions between active and inactive chromatin states. Although XCI has long been studied, providing important insights into gene regulation, the dynamics and mechanisms underlying the reversal of stable chromatin silencing of X-linked genes are much less understood. Here, we use allele-specific transcriptomics to study XCR during mouse iPSC reprogramming in order to elucidate the timing and mechanisms of chromosome-wide reversal of gene silencing. We show that XCR is hierarchical, with subsets of genes reactivating early, late, and very late during reprogramming. Early genes are activated before the onset of late pluripotency genes activation. Early genes are located genomically closer to genes that escape XCI, unlike genes reactivating late. Early genes also show increased pluripotency transcription factor (TF) binding. We also reveal that histone deacetylases (HDACs) restrict XCR in reprogramming intermediates and that the severe hypoacetylation state of the inactive X Chromosome (Xi) persists until late reprogramming stages. Altogether, these results reveal the timing of transcriptional activation of monoallelically repressed genes during iPSC reprogramming, and suggest that allelic activation involves the combined action of chromatin topology, pluripotency TFs, and chromatin regulators. These findings are important for our understanding of gene silencing, maintenance of cell identity, reprogramming, and disease.


Subject(s)
Cellular Reprogramming/genetics , Induced Pluripotent Stem Cells/cytology , RNA, Long Noncoding/genetics , X Chromosome Inactivation/genetics , Animals , Chromatin/genetics , Female , Gene Silencing , Genes, X-Linked/genetics , Histone Deacetylases/genetics , Mice , Transcriptional Activation/genetics , X Chromosome/genetics
11.
Cell ; 174(4): 843-855.e19, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30017245

ABSTRACT

Many patients with advanced cancers achieve dramatic responses to a panoply of therapeutics yet retain minimal residual disease (MRD), which ultimately results in relapse. To gain insights into the biology of MRD, we applied single-cell RNA sequencing to malignant cells isolated from BRAF mutant patient-derived xenograft melanoma cohorts exposed to concurrent RAF/MEK-inhibition. We identified distinct drug-tolerant transcriptional states, varying combinations of which co-occurred within MRDs from PDXs and biopsies of patients on treatment. One of these exhibited a neural crest stem cell (NCSC) transcriptional program largely driven by the nuclear receptor RXRG. An RXR antagonist mitigated accumulation of NCSCs in MRD and delayed the development of resistance. These data identify NCSCs as key drivers of resistance and illustrate the therapeutic potential of MRD-directed therapy. They also highlight how gene regulatory network architecture reprogramming may be therapeutically exploited to limit cellular heterogeneity, a key driver of disease progression and therapy resistance.


Subject(s)
Gene Expression Regulation, Neoplastic/drug effects , Melanoma/drug therapy , Neoplasm, Residual/drug therapy , Neoplastic Stem Cells/drug effects , Neural Stem Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Retinoid X Receptor gamma/antagonists & inhibitors , Animals , Biomarkers, Tumor , Drug Resistance, Neoplasm/drug effects , Female , Humans , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 1/genetics , Male , Melanoma/metabolism , Melanoma/pathology , Mice, SCID , Mutation , Neoplasm, Residual/metabolism , Neoplasm, Residual/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
12.
Neuro Oncol ; 20(7): 930-941, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29373718

ABSTRACT

Background: Glioblastoma, the most aggressive primary brain tumor, is genetically heterogeneous. Alternative splicing (AS) plays a key role in numerous pathologies, including cancer. The objectives of our study were to determine whether aberrant AS could play a role in the malignant phenotype of glioma and to understand the mechanism underlying its aberrant regulation. Methods: We obtained surgical samples from patients with glioblastoma who underwent 5-aminolevulinic fluorescence-guided surgery. Biopsies were taken from the tumor center as well as from adjacent normal-appearing tissue. We used a global splicing array to identify candidate genes aberrantly spliced in these glioblastoma samples. Mechanistic and functional studies were performed to elucidate the role of our top candidate splice variant, BAF45d, in glioblastoma. Results: BAF45d is part of the switch/sucrose nonfermentable complex and plays a key role in the development of the CNS. The BAF45d/6A isoform is present in 85% of over 200 glioma samples that have been analyzed and contributes to the malignant glioma phenotype through the maintenance of an undifferentiated cellular state. We demonstrate that BAF45d splicing is mediated by polypyrimidine tract-binding protein 1 (PTBP1) and that BAF45d regulates PTBP1, uncovering a reciprocal interplay between RNA splicing regulation and transcription. Conclusions: Our data indicate that AS is a mechanism that contributes to the malignant phenotype of glioblastoma. Understanding the consequences of this biological process will uncover new therapeutic targets for this devastating disease.


Subject(s)
Alternative Splicing , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Transcription Factors/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Movement , Cell Proliferation , Glioblastoma/metabolism , Glioblastoma/pathology , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Humans , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Protein Isoforms , Tumor Cells, Cultured
13.
Genome Biol ; 18(1): 202, 2017 10 27.
Article in English | MEDLINE | ID: mdl-29078818

ABSTRACT

BACKGROUND: It is now obvious that the majority of cellular transcripts do not code for proteins, and a significant subset of them are long non-coding RNAs (lncRNAs). Many lncRNAs show aberrant expression in cancer, and some of them have been linked to cell transformation. However, the underlying mechanisms remain poorly understood and it is unknown how the sequences of lncRNA dictate their function. RESULTS: Here we characterize the function of the p53-regulated human lncRNA LINC-PINT in cancer. We find that LINC-PINT is downregulated in multiple types of cancer and acts as a tumor suppressor lncRNA by reducing the invasive phenotype of cancer cells. A cross-species analysis identifies a highly conserved sequence element in LINC-PINT that is essential for its function. This sequence mediates a specific interaction with PRC2, necessary for the LINC-PINT-dependent repression of a pro-invasion signature of genes regulated by the transcription factor EGR1. CONCLUSIONS: Our findings support a conserved functional co-dependence between LINC-PINT and PRC2 and lead us to propose a new mechanism where the lncRNA regulates the availability of free PRC2 at the proximity of co-regulated genomic loci.


Subject(s)
Neoplasm Invasiveness , RNA, Long Noncoding/chemistry , RNA, Long Noncoding/physiology , Animals , Base Sequence , Cell Movement , Conserved Sequence , Down-Regulation , Gene Silencing , Humans , Mice , Neoplasms/genetics , Neoplasms/metabolism , Polycomb Repressive Complex 2/metabolism
14.
Mol Cell ; 63(3): 397-407, 2016 08 04.
Article in English | MEDLINE | ID: mdl-27477908

ABSTRACT

Long noncoding RNAs (lncRNAs) are involved in diverse cellular processes through multiple mechanisms. Here, we describe a previously uncharacterized human lncRNA, CONCR (cohesion regulator noncoding RNA), that is transcriptionally activated by MYC and is upregulated in multiple cancer types. The expression of CONCR is cell cycle regulated, and it is required for cell-cycle progression and DNA replication. Moreover, cells depleted of CONCR show severe defects in sister chromatid cohesion, suggesting an essential role for CONCR in cohesion establishment during cell division. CONCR interacts with and regulates the activity of DDX11, a DNA-dependent ATPase and helicase involved in DNA replication and sister chromatid cohesion. These findings unveil a direct role for an lncRNA in the establishment of sister chromatid cohesion by modulating DDX11 enzymatic activity.


Subject(s)
Chromatids/metabolism , DNA Replication , DNA, Neoplasm/biosynthesis , Neoplasms/metabolism , RNA, Long Noncoding/metabolism , A549 Cells , Animals , Apoptosis , Cell Proliferation , Chromatids/genetics , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , DNA, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic , HCT116 Cells , HeLa Cells , Humans , Mice, Inbred BALB C , Mice, Transgenic , Neoplasms/genetics , Neoplasms/pathology , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA Interference , RNA, Long Noncoding/genetics , Time Factors , Transcription, Genetic , Transcriptional Activation , Transfection , Tumor Burden , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
15.
Methods Mol Biol ; 1206: 87-95, 2015.
Article in English | MEDLINE | ID: mdl-25240889

ABSTRACT

Recent advances in genomics have revealed that cells encode thousands of noncoding RNA molecules that do not require translation to proteins to perform their biological roles. Although very little is known about the mechanisms of function of noncoding RNAs, these undoubtedly involve the interaction with multiple cellular proteins. Here we describe a detailed RNA pulldown protocol for the in vitro detection of proteins specifically interacting with a long RNA molecule.


Subject(s)
Molecular Biology/methods , Proteins/metabolism , RNA, Untranslated/analysis , RNA, Untranslated/metabolism , Animals , Biotin/chemistry , Cells, Cultured , Fibroblasts , Mice , Proteins/analysis , RNA, Untranslated/chemistry
16.
Nat Commun ; 5: 5812, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25524025

ABSTRACT

Despite the inarguable relevance of p53 in cancer, genome-wide studies relating endogenous p53 activity to the expression of lncRNAs in human cells are still missing. Here, by integrating RNA-seq with p53 ChIP-seq analyses of a human cancer cell line under DNA damage, we define a high-confidence set of 18 lncRNAs that are p53 transcriptional targets. We demonstrate that two of the p53-regulated lncRNAs are required for the efficient binding of p53 to some of its target genes, modulating the p53 transcriptional network and contributing to apoptosis induction by DNA damage. We also show that the expression of p53-lncRNAs is lowered in colorectal cancer samples, constituting a tumour suppressor signature with high diagnostic power. Thus, p53-regulated lncRNAs establish a positive regulatory feedback loop that enhances p53 tumour suppressor activity. Furthermore, the signature defined by p53-regulated lncRNAs supports their potential use in the clinic as biomarkers and therapeutic targets.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Gene Regulatory Networks , RNA, Long Noncoding/metabolism , Tumor Suppressor Protein p53/metabolism , DNA Damage , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , HCT116 Cells , Humans , Protein Binding , RNA, Long Noncoding/genetics , Tumor Suppressor Protein p53/genetics
17.
Genome Biol ; 14(9): R104, 2013.
Article in English | MEDLINE | ID: mdl-24070194

ABSTRACT

BACKGROUND: The p53 transcription factor is located at the core of a complex wiring of signaling pathways that are critical for the preservation of cellular homeostasis. Only recently it has become clear that p53 regulates the expression of several long intergenic noncoding RNAs (lincRNAs). However, relatively little is known about the role that lincRNAs play in this pathway. RESULTS: Here we characterize a lincRNA named Pint (p53 induced noncoding transcript). We show that Pint is aubiquitously expressed lincRNA that is finely regulated by p53. In mouse cells, Pint promotes cell proliferation and survival by regulating the expression of genes of the TGF-b, MAPK and p53 pathways. Pint is a nuclear lincRNA that directly interacts with the Polycomb repressive complex 2 (PRC2), and is required for PRC2 targeting of specific genes for H3K27 tri-methylation and repression. Furthermore, Pint functional activity is highly dependent on PRC2 expression. We have also identified Pint human ortholog (PINT), which presents suggestive analogies with the murine lincRNA. PINT is similarly regulated by p53, and its expression significantly correlates with the same cellular pathways as the mouse ortholog, including the p53 pathway. Interestingly, PINT is downregulated in colon primary tumors, while its overexpression inhibits the proliferation of tumor cells, suggesting a possible role as tumor suppressor. CONCLUSIONS: Our results reveal a p53 autoregulatory negative mechanism where a lincRNA connects p53 activation with epigenetic silencing by PRC2. Additionally, we show analogies and differences between the murine and human orthologs, identifying a novel tumor suppressor candidate lincRNA.


Subject(s)
Colonic Neoplasms/genetics , Epigenesis, Genetic , Histones/genetics , Polycomb Repressive Complex 2/genetics , RNA, Long Noncoding/genetics , Tumor Suppressor Protein p53/genetics , Animals , Cell Proliferation , Cell Survival , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Histones/metabolism , Humans , Mice , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , NIH 3T3 Cells , Polycomb Repressive Complex 2/metabolism , RNA, Long Noncoding/antagonists & inhibitors , RNA, Long Noncoding/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Tumor Suppressor Protein p53/metabolism
18.
Haematologica ; 96(10): 1448-56, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21750091

ABSTRACT

BACKGROUND: The EVI1 gene (3q26) codes for a zinc finger transcription factor with important roles in both mammalian development and leukemogenesis. Over-expression of EVI1 through either 3q26 rearrangements, MLL fusions, or other unknown mechanisms confers a poor prognosis in acute myeloid leukemia. DESIGN AND METHODS: We analyzed the prevalence and prognostic impact of EVI1 over-expression in a series of 476 patients with acute myeloid leukemia, and investigated the epigenetic modifications of the EVI1 locus which could be involved in the transcriptional regulation of this gene. RESULTS: Our data provide further evidence that EVI1 over-expression is a poor prognostic marker in acute myeloid leukemia patients less than 65 years old. Moreover, we found that patients with no basal expression of EVI1 had a better prognosis than patients with expression/over-expression (P=0.036). We also showed that cell lines with over-expression of EVI1 had no DNA methylation in the promoter region of the EVI1 locus, and had marks of active histone modifications: H3 and H4 acetylation, and trimethylation of histone H3 lysine 4. Conversely, cell lines with no expression of EVI1 have DNA hypermethylation and are marked by repressive trimethylation of histone H3 lysine 27 at the EVI1 promoter. CONCLUSIONS: Our results identify EVI1 over-expression as a poor prognostic marker in a large, independent cohort of acute myeloid leukemia patients less than 65 years old, and show that the total absence of EVI1 expression has a prognostic impact on the outcome of such patients. Furthermore, we demonstrated for the first time that an aberrant epigenetic pattern involving DNA methylation, H3 and H4 acetylation, and trimethylation of histone H3 lysine 4 and histone H3 lysine 27 might play a role in the transcriptional regulation of EVI1 in acute myeloid leukemia. This study opens new avenues for a better understanding of the regulation of EVI1 expression at a transcriptional level.


Subject(s)
DNA-Binding Proteins/genetics , Down-Regulation/genetics , Epigenesis, Genetic , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Proto-Oncogenes/genetics , Transcription Factors/genetics , Aged , Aged, 80 and over , Alternative Splicing , Cell Line, Tumor , Chromosomes, Human, Pair 3 , Female , Gene Expression Profiling , Gene Expression Regulation, Leukemic , Gene Rearrangement , Humans , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/mortality , MDS1 and EVI1 Complex Locus Protein , Male , Middle Aged , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...