Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Hum Mutat ; 41(8): 1365-1371, 2020 08.
Article in English | MEDLINE | ID: mdl-32383249

ABSTRACT

Clinical guidelines consider expanded carrier screening (ECS) to be an acceptable method of carrier screening. However, broader guideline support and payer adoption require evidence for associations between the genes on ECS panels and the conditions for which they aim to identify carriers. We applied a standardized framework for evaluation of gene-disease association to assess the clinical validity of conditions screened by ECS panels. The Clinical Genome Resource (ClinGen) gene curation framework was used to assess genetic and experimental evidence of associations between 208 genes and conditions screened on two commercial ECS panels. Twenty-one conditions were previously classified by ClinGen, and the remaining 187 were evaluated by curation teams at two laboratories. To ensure consistent application of the framework across the laboratories, concordance was evaluated on a subset of conditions. All 208 evaluated conditions met the evidence threshold for supporting a gene-disease association. Furthermore, 203 of 208 (98%) achieved the strongest ("Definitive") level of gene-disease association. All conditions evaluated by both commercial laboratories were similarly classified. Assessment using the ClinGen standardized framework revealed strong evidence of gene-disease association for conditions on two ECS panels. This result establishes the disease-level clinical validity of the panels considered herein.


Subject(s)
Genetic Carrier Screening/methods , Genetic Predisposition to Disease , Computational Biology , Heterozygote , Humans
2.
Clin Genet ; 96(3): 236-245, 2019 09.
Article in English | MEDLINE | ID: mdl-31170325

ABSTRACT

Expanded carrier screening (ECS) panels that use next-generation sequencing aim to identify pathogenic variants in coding and clinically relevant non-coding regions of hundreds of genes, each associated with a serious recessive condition. ECS has established analytical validity and clinical utility, meaning that variants are accurately identified and pathogenic variants tend to alter patients' clinical management, respectively. However, the clinical validity of ECS, that is, correct discernment of whether an identified variant is indeed pathogenic, has only been shown for single conditions, not for panels. Here, we evaluate the clinical validity of a >170-condition ECS panel by assessing concordance between >12 000 variant interpretations classified with guideline-based criteria to their corresponding per-variant combined classifications in ClinVar. We observe 99% concordance at the level of unique variants. A more clinically relevant frequency-weighted analysis reveals that fewer than 1 in 500 patients are expected to receive a report with a variant that has a discordant classification. Importantly, gene-level concordance is not diminished for rare ECS conditions, suggesting that large panels do not balloon the panel-wide false-positive rate. Finally, because ECS is intended to serve all reproductive-age couples, we show that classification of novel variants is feasible and scales predictably for a large population.


Subject(s)
Computational Biology/methods , Genetic Carrier Screening , Genetic Testing , Genetic Variation , Alleles , DNA Copy Number Variations , Female , Gene Frequency , Genetic Carrier Screening/methods , Genetic Carrier Screening/standards , Genetic Testing/methods , Genetic Testing/standards , Humans , Male , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , Reproducibility of Results , Sensitivity and Specificity
3.
Genet Med ; 21(11): 2442-2452, 2019 11.
Article in English | MEDLINE | ID: mdl-31160754

ABSTRACT

PURPOSE: Pathogenic variants in GJB2 are the most common cause of autosomal recessive sensorineural hearing loss. The classification of c.101T>C/p.Met34Thr and c.109G>A/p.Val37Ile in GJB2 are controversial. Therefore, an expert consensus is required for the interpretation of these two variants. METHODS: The ClinGen Hearing Loss Expert Panel collected published data and shared unpublished information from contributing laboratories and clinics regarding the two variants. Functional, computational, allelic, and segregation data were also obtained. Case-control statistical analyses were performed. RESULTS: The panel reviewed the synthesized information, and classified the p.Met34Thr and p.Val37Ile variants utilizing professional variant interpretation guidelines and professional judgment. We found that p.Met34Thr and p.Val37Ile are significantly overrepresented in hearing loss patients, compared with population controls. Individuals homozygous or compound heterozygous for p.Met34Thr or p.Val37Ile typically manifest mild to moderate hearing loss. Several other types of evidence also support pathogenic roles for these two variants. CONCLUSION: Resolving controversies in variant classification requires coordinated effort among a panel of international multi-institutional experts to share data, standardize classification guidelines, review evidence, and reach a consensus. We concluded that p.Met34Thr and p.Val37Ile variants in GJB2 are pathogenic for autosomal recessive nonsyndromic hearing loss with variable expressivity and incomplete penetrance.


Subject(s)
Connexins/genetics , Hearing Loss/genetics , Alleles , Case-Control Studies , Connexin 26/genetics , Connexins/metabolism , Deafness/genetics , Female , Hearing Loss, Sensorineural/genetics , Humans , Male , Mutation , Polymorphism, Single Nucleotide/genetics
4.
Hum Mutat ; 39(11): 1641-1649, 2018 11.
Article in English | MEDLINE | ID: mdl-30311378

ABSTRACT

ClinVar provides open access to variant classifications shared from many clinical laboratories. Although most classifications are consistent across laboratories, classification differences exist. To facilitate resolution of classification differences on a large scale, clinical laboratories were encouraged to reassess outlier classifications of variants with medically significant differences (MSDs). Outliers were identified by first comparing ClinVar submissions from 41 clinical laboratories to detect variants with MSDs between the laboratories (650 variants). Next, MSDs were filtered for variants with ≥3 classifications (244 variants), of which 87.6% (213 variants) had a majority consensus in ClinVar, thus allowing for identification of outlier classifications in need of reassessment. Laboratories with outlier classifications were sent a custom report and encouraged to reassess variants. Results were returned for 204 (96%) variants, of which 62.3% (127) were resolved. Of those 127, 64.6% (82) were resolved due to reassessment prompted by this study and 35.4% (45) resolved by a previously completed reassessment. This study demonstrates a scalable approach to classification resolution and capitalizes on the value of data sharing within ClinVar. These activities will help the community move toward more consistent variant classifications, which will improve the care of patients with, or at risk for, genetic disorders.


Subject(s)
Databases, Genetic , Genetic Testing/methods , Genetic Variation/genetics , Genome, Human/genetics , Humans
5.
Clin Chem ; 64(7): 1063-1073, 2018 07.
Article in English | MEDLINE | ID: mdl-29760218

ABSTRACT

BACKGROUND: By identifying pathogenic variants across hundreds of genes, expanded carrier screening (ECS) enables prospective parents to assess the risk of transmitting an autosomal recessive or X-linked condition. Detection of at-risk couples depends on the number of conditions tested, the prevalence of the respective diseases, and the screen's analytical sensitivity for identifying disease-causing variants. Disease-level analytical sensitivity is often <100% in ECS tests because copy number variants (CNVs) are typically not interrogated because of their technical complexity. METHODS: We present an analytical validation and preliminary clinical characterization of a 235-gene sequencing-based ECS with full coverage across coding regions, targeted assessment of pathogenic noncoding variants, panel-wide CNV calling, and specialized assays for technically challenging genes. Next-generation sequencing, customized bioinformatics, and expert manual call review were used to identify single-nucleotide variants, short insertions and deletions, and CNVs for all genes except FMR1 and those whose low disease incidence or high technical complexity precluded novel variant identification or interpretation. RESULTS: Screening of 36859 patients' blood or saliva samples revealed the substantial impact on fetal disease-risk detection attributable to novel CNVs (9.19% of risk) and technically challenging conditions (20.2% of risk), such as congenital adrenal hyperplasia. Of the 7498 couples screened, 335 were identified as at risk for an affected pregnancy, underscoring the clinical importance of the test. Validation of our ECS demonstrated >99% analytical sensitivity and >99% analytical specificity. CONCLUSIONS: Validated high-fidelity identification of different variant types-especially for diseases with complicated molecular genetics-maximizes at-risk couple detection.


Subject(s)
DNA Copy Number Variations , Exons , Genetic Carrier Screening , Cohort Studies , Humans , INDEL Mutation , Polymorphism, Single Nucleotide
6.
Genet Med ; 20(1): 55-63, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28640244

ABSTRACT

PurposeThe recent growth in pan-ethnic expanded carrier screening (ECS) has raised questions about how such panels might be designed and evaluated systematically. Design principles for ECS panels might improve clinical detection of at-risk couples and facilitate objective discussions of panel choice.MethodsGuided by medical-society statements, we propose a method for the design of ECS panels that aims to maximize the aggregate and per-disease sensitivity and specificity across a range of Mendelian disorders considered serious by a systematic classification scheme. We evaluated this method retrospectively using results from 474,644 de-identified carrier screens. We then constructed several idealized panels to highlight strengths and limitations of different ECS methodologies.ResultsBased on modeled fetal risks for "severe" and "profound" diseases, a commercially available ECS panel (Counsyl) is expected to detect 183 affected conceptuses per 100,000 US births. A screen's sensitivity is greatly impacted by two factors: (i) the methodology used (e.g., full-exon sequencing finds more affected conceptuses than targeted genotyping) and (ii) the detection rate of the screen for diseases with high prevalence and complex molecular genetics (e.g., fragile X syndrome).ConclusionThe described approaches enable principled, quantitative evaluation of which diseases and methodologies are appropriate for pan-ethnic expanded carrier screening.


Subject(s)
Genetic Carrier Screening/methods , Genetic Carrier Screening/standards , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Testing/methods , Genetic Testing/standards , Genomics/methods , Genomics/standards , Guideline Adherence , Humans , Reproducibility of Results
7.
PeerJ ; 4: e2162, 2016.
Article in English | MEDLINE | ID: mdl-27375968

ABSTRACT

Hereditary breast and ovarian cancer syndrome, caused by a germline pathogenic variant in the BRCA1 or BRCA2 (BRCA1/2) genes, is characterized by an increased risk for breast, ovarian, pancreatic and other cancers. Identification of those who have a BRCA1/2 mutation is important so that they can take advantage of genetic counseling, screening, and potentially life-saving prevention strategies. We describe the design and analytic validation of the Counsyl Inherited Cancer Screen, a next-generation-sequencing-based test to detect pathogenic variation in the BRCA1 and BRCA2 genes. We demonstrate that the test is capable of detecting single-nucleotide variants (SNVs), short insertions and deletions (indels), and copy-number variants (CNVs, also known as large rearrangements) with zero errors over a 114-sample validation set consisting of samples from cell lines and deidentified patient samples, including 36 samples with BRCA1/2pathogenic germline mutations.

8.
Hum Mol Genet ; 19(4): 597-608, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-19995791

ABSTRACT

Upstream transcription factor 1 (USF1) has been associated with familial combined hyperlipidemia, the metabolic syndrome, and related conditions, but the mechanisms involved are unknown. In this study, we report validation of Usf1 as a causal gene of cholesterol homeostasis, insulin sensitivity and body composition in mouse models using several complementary approaches and identify associated pathways and gene expression network modules. Over-expression of human USF1 in both transgenic mice and mice with transient liver-specific over-expression influenced metabolic trait phenotypes, including obesity, total cholesterol level, LDL/VLDL cholesterol and glucose/insulin ratio. Additional analyses of trait and hepatic gene expression data from an F2 population derived from C57BL/6J and C3H/HeJ strains in which there is a naturally occurring variation in Usf1 expression supported a causal role for Usf1 for relevant metabolic traits. Gene network and pathway analyses of the liver gene expression signatures in the F2 population and the hepatic over-expression model suggested the involvement of Usf1 in immune responses and metabolism, including an Igfbp2-centered module. In all three mouse model settings, notable sex specificity was observed, consistent with human studies showing differences in association with USF1 gene polymorphisms between sexes.


Subject(s)
Hyperlipidemia, Familial Combined/metabolism , Lipids/blood , Upstream Stimulatory Factors/metabolism , Animals , Cholesterol/blood , Disease Models, Animal , Female , Humans , Hyperlipidemia, Familial Combined/genetics , Liver/metabolism , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Upstream Stimulatory Factors/genetics
9.
Arterioscler Thromb Vasc Biol ; 28(6): 1193-9, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18340007

ABSTRACT

OBJECTIVE: Stearoyl-CoA desaturase 1 (SCD1) is the rate-limiting enzyme involved in the synthesis of monounsaturated fatty acids, and in mice SCD1 activity is associated with plasma triglyceride levels. We used the fatty acid desaturation index (the plasma ratio of 18:1/18:0) as a marker of SCD1 activity to investigate the relationship of SCD1 to familial combined hyperlipidemia (FCHL). METHODS AND RESULTS: The fatty acid desaturation index was measured in 400 individuals from 18 extended FCHL pedigrees. FCHL-affected individuals exhibited increased SCD1 activity when compared to unrelated controls (P < 0.0001). The fatty acid desaturation index was found to be highly heritable (h(2) = 0.48, P = 2.2 x 10(-11)) in this study sample. QTL analysis in 346 sibling pairs from 18 FCHL families revealed suggestive linkage of the desaturation index to chromosomes 3p26.1 to 3p13 (z = 2.7, P = 0.003), containing the peroxisome proliferator-activated receptor gamma (PPARgamma) gene, and 20p11.21 to 20q13.32 (z = 1.7, P = 0.04), containing the hepatocyte nuclear factor 4, alpha (HNF4alpha) gene. A specific haplotype of HNF4alpha was found to be associated with the desaturation index in these FCHL families (P = 0.002). CONCLUSIONS: Our results demonstrate that the fatty acid desaturation index is a highly heritable trait that is associated with the dyslipidemia observed in FCHL.


Subject(s)
Hyperlipidemia, Familial Combined/enzymology , Hyperlipidemia, Familial Combined/genetics , Pedigree , Stearoyl-CoA Desaturase/metabolism , Adult , Chromosome Mapping , Dyslipidemias/genetics , Fatty Acids/metabolism , Female , Haplotypes/genetics , Hepatocyte Nuclear Factor 4/genetics , Humans , Linkage Disequilibrium/genetics , Male , Middle Aged , PPAR gamma/genetics , Stearoyl-CoA Desaturase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...