Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 16(9): 22280-98, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26389888

ABSTRACT

The moss Physcomitrella patens is a suitable model plant to analyze the activation of defense mechanisms after pathogen assault. In this study, we show that Colletotrichum gloeosporioides isolated from symptomatic citrus fruit infects P. patens and cause disease symptoms evidenced by browning and maceration of tissues. After C. gloeosporioides infection, P. patens reinforces the cell wall by the incorporation of phenolic compounds and induces the expression of a Dirigent-protein-like encoding gene that could lead to the formation of lignin-like polymers. C. gloeosporioides-inoculated protonemal cells show cytoplasmic collapse, browning of chloroplasts and modifications of the cell wall. Chloroplasts relocate in cells of infected tissues toward the initially infected C. gloeosporioides cells. P. patens also induces the expression of the defense genes PAL and CHS after fungal colonization. P. patens reporter lines harboring the auxin-inducible promoter from soybean (GmGH3) fused to ß-glucuronidase revealed an auxin response in protonemal tissues, cauloids and leaves of C. gloeosporioides-infected moss tissues, indicating the activation of auxin signaling. Thus, P. patens is an interesting plant to gain insight into defense mechanisms that have evolved in primitive land plants to cope with microbial pathogens.


Subject(s)
Ascomycota/pathogenicity , Bryophyta/microbiology , Plant Immunity , Bryophyta/immunology , Cell Wall/metabolism , Chloroplasts/metabolism , Indoleacetic Acids/metabolism , Plant Cells/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
2.
FEMS Microbiol Lett ; 298(2): 143-8, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19624747

ABSTRACT

The most severe form of citrus canker disease is caused by Xanthomonas axonopodis pv. citri (Xac) and affects all types of important citrus crops, reducing fruit yield and quality. Copper-based products are routinely used as a standard control measure for citrus canker. In this work we demonstrate that copper treatment induces the viable but nonculturable (VBNC) state in Xac but does not prevent the development of symptoms in susceptible plants. Short-term exposures to different concentrations of copper solutions were assayed to determine which treatment resulted in Xac nonculturability. Treatment of 10(6) mL(-1) Xac cells for 10 min in a 135-muM CuSO(4) solution (equivalent to three times the free soluble copper concentration applied in one field treatment) resulted in nonculturability. However, 16% of cells were viable based on 5-cyano-2,3-ditolyl tetrazolium chloride staining and 1% were capable of producing canker lesions after infiltrating grapefruit plants. If induction of the VBNC state in Xac cells were to occur under field conditions, this would have to be taken into consideration for an effective control of canker disease.


Subject(s)
Anti-Bacterial Agents/pharmacology , Copper Sulfate/pharmacology , Microbial Viability/drug effects , Xanthomonas axonopodis/drug effects , Xanthomonas axonopodis/pathogenicity , Citrus paradisi/microbiology , Plant Diseases/microbiology , Virulence/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...