Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Differentiation ; 131: 27-37, 2023.
Article in English | MEDLINE | ID: mdl-37058884

ABSTRACT

Neural crest cells along the body axis of avian embryos differ in their developmental potential, such that the cranial neural crest forms cartilage and bone whereas the trunk neural crest is unable to do so. Previous studies have identified a cranial crest-specific subcircuit that can imbue the trunk neural crest with the ability to form cartilage after grafting to the head. Here, we examine transcriptional and cell fate changes that accompany this reprogramming. First, we examined whether reprogrammed trunk neural crest maintain the ability to form cartilage in their endogenous environment in the absence of cues from the head. The results show that some reprogrammed cells contribute to normal trunk neural crest derivatives, whereas others migrate ectopically to the forming vertebrae and express cartilage markers, thus mimicking heterotypically transplanted cranial crest cells. We find that reprogrammed trunk neural crest upregulated more than 3000 genes in common with cranial neural crest, including numerous transcriptional regulators. In contrast, many trunk neural crest genes are downregulated. Together, our findings show that reprogramming trunk neural crest with cranial crest subcircuit genes alters their gene regulatory program and developmental potential to be more cranial crest-like.


Subject(s)
Neural Crest , Transcriptome , Cell Differentiation , Cartilage , Bone and Bones , Cell Movement
2.
J Am Soc Nephrol ; 31(11): 2543-2558, 2020 11.
Article in English | MEDLINE | ID: mdl-32764140

ABSTRACT

BACKGROUND: Hepatocyte NF 4α (Hnf4a) is a major regulator of renal proximal tubule (PT) development. In humans, a mutation in HNF4A impairs PT functions and is associated with Fanconi renotubular syndrome (FRTS). In mice, mosaic deletion of Hnf4a in the developing kidney reduces the population of PT cells, leading to FRTS-like symptoms. The molecular mechanisms underlying the role of Hnf4a in PT development remain unclear. METHODS: The gene deletion tool Osr2Cre removed Hnf4a in developing nephrons in mice, generating a novel model for FRTS. Immunofluorescence analysis characterized the mutant phenotype, and lineage analysis tested whether Cadherin-6 (Cdh6)-expressing cells are PT progenitors. Genome-wide mapping of Hnf4a binding sites and differential gene analysis of Hnf4a mutant kidneys identified direct target genes of Hnf4a. RESULTS: Deletion of Hnf4a with Osr2Cre led to the complete loss of mature PT cells, lethal to the Hnf4a mutant mice. Cdh6high, lotus tetragonolobus lectin-low (LTLlow) cells serve as PT progenitors and demonstrate higher proliferation than Cdh6low, LTLhigh differentiated PT cells. Additionally, Hnf4a is required for PT progenitors to differentiate into mature PT cells. Genomic analyses revealed that Hnf4a directly regulates the expression of genes involved in transmembrane transport and metabolism. CONCLUSIONS: Hnf4a promotes the differentiation of PT progenitors into mature PT cells by regulating the expression of genes associated with reabsorption, the major function of PT cells.


Subject(s)
Cadherins/metabolism , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Kidney Tubules, Proximal/metabolism , Lectins/metabolism , Stem Cells/metabolism , Animals , Cadherins/genetics , Cell Differentiation/genetics , Cell Proliferation , Disease Models, Animal , Fanconi Syndrome/genetics , Female , Gene Expression Regulation/genetics , Gene Ontology , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/physiopathology , Mice , Mice, Knockout , Phenotype , Renal Reabsorption/genetics , Stem Cells/physiology
3.
JCI Insight ; 3(14)2018 07 26.
Article in English | MEDLINE | ID: mdl-30046000

ABSTRACT

Different nephron tubule segments perform distinct physiological functions, collectively acting as a blood filtration unit. Dysfunction of the proximal tubule segment can lead to Fanconi renotubular syndrome (FRTS), with major symptoms such as excess excretion of water, glucose, and phosphate in the urine. It has been shown that a mutation in HNF4A is associated with FRTS in humans and that Hnf4a is expressed specifically in proximal tubules in adult rat nephrons. However, little is known about the role of Hnf4a in nephrogenesis. Here, we found that Hnf4a is expressed in both presumptive and differentiated proximal tubules in the developing mouse kidney. We show that Hnf4a is required for the formation of differentiated proximal tubules but is dispensable for the formation of presumptive proximal tubules. Furthermore, we show that loss of Hnf4a decreased the expression of proximal tubule-specific genes. Adult Hnf4a mutant mice presented with FRTS-like symptoms, including polyuria, polydipsia, glycosuria, and phosphaturia. Analysis of the adult Hnf4a mutant kidney also showed proximal tubule dysgenesis and nephrocalcinosis. Our results demonstrate the critical role of Hnf4a in proximal tubule development and provide mechanistic insight into the etiology of FRTS.


Subject(s)
Fanconi Syndrome/genetics , Fanconi Syndrome/metabolism , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Kidney Tubules, Proximal/metabolism , Animals , Disease Models, Animal , Female , Gene Deletion , Gene Expression Regulation, Developmental , Genetic Diseases, Inborn/genetics , Humans , Kidney/growth & development , Kidney Tubules, Proximal/growth & development , Male , Mice , Mice, Knockout , Organogenesis , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...