Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(7)2023 07 12.
Article in English | MEDLINE | ID: mdl-37510338

ABSTRACT

MicroRNAs (miRNAs), small non-coding RNA molecules, regulate a wide range of critical biological processes, such as proliferation, cell cycle progression, differentiation, survival, and apoptosis, in many cell types. The regulatory functions of miRNAs in embryogenesis and stem cell properties have been extensively investigated since the early years of miRNA discovery. In this review, we will compare and discuss the impact of stem-cell-specific miRNA clusters on the maintenance and regulation of early embryonic development, pluripotency, and self-renewal of embryonic stem cells, particularly in vertebrates.


Subject(s)
MicroRNAs , Pluripotent Stem Cells , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Pluripotent Stem Cells/metabolism , Embryonic Stem Cells/metabolism , Cell Differentiation/genetics , Vertebrates/genetics
2.
Zygote ; 28(3): 183-190, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32192548

ABSTRACT

Dual inhibition (2i) of Ras-MEK-ERK and GSK3ß pathways enables the derivation of embryo stem cells (ESCs) from refractory mouse strains and, for permissive strains, allows ESC derivation with no external protein factor stimuli involvement. In addition, blocking of ERK signalling in 8-cell-stage mouse embryos leads to ablation of GATA4/6 expression in hypoblasts, suggesting fibroblast growth factor (FGF) dependence of hypoblast formation in the mouse. In human, bovine or porcine embryos, the hypoblast remains unaffected or displays slight-to-moderate reduction in cell number. In this study, we demonstrated that segregation of the hypoblast and the epiblast in rabbit embryos is FGF independent and 2i treatment elicits only a limited reinforcement in favour of OCT4-positive epiblast populations against the GATA4-/6-positive hypoblast population. It has been previously shown that TGFß/Activin A inhibition overcomes the pervasive differentiation and inhomogeneity of rat iPSCs, rat ESCs and human iPSCs while prompting them to acquire naïve properties. However, TGFß/Activin A inhibition, alone or together with Rho-associated, coiled-coil containing protein kinase (ROCK) inhibition, was not compatible with the viability of rabbit embryos according to the ultrastructural analysis of preimplantation rabbit embryos by electron microscopy. In rabbit models ovulation upon mating allows the precise timing of progression of the pregnancy. It produces several embryos of the desired stage in one pregnancy and a relatively short gestation period, making the rabbit embryo a suitable model to discover the cellular functions and mechanisms of maintenance of pluripotency in embryonic cells and the embryo-derived stem cells of other mammals.


Subject(s)
Embryo, Mammalian/metabolism , Embryonic Development/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase Kinases/metabolism , ras Proteins/metabolism , Amides/pharmacology , Animals , Benzamides/pharmacology , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Embryo Culture Techniques , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Enzyme Inhibitors/pharmacology , Female , Germ Layers/cytology , Germ Layers/drug effects , Germ Layers/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology , Rabbits , Thiosemicarbazones/pharmacology , ras Proteins/antagonists & inhibitors
3.
Reproduction ; 145(4): 421-37, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23426804

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that regulate multiple biological processes. Increasing experimental evidence implies an important regulatory role of miRNAs during embryonic development and in embryonic stem (ES) cell biology. In the current study, we have described and analyzed the expression profile of pluripotency-associated miRNAs in rabbit embryos and ES-like cells. The rabbit specific ocu-miR-302 and ocu-miR-290 clusters, and three homologs of the human C19MC cluster (ocu-miR-512, ocu-miR-520e, and ocu-miR-498) were identified in rabbit preimplantation embryos and ES-like cells. The ocu-miR-302 cluster was highly similar to its human homolog, while ocu-miR-290 revealed a low level of evolutionary conservation with its mouse homologous cluster. The expression of the ocu-miR-302 cluster began at the 3.5 days post-coitum early blastocyst stage and they stayed highly expressed in rabbit ES-like cells. In contrast, a high expression level of the ocu-miR-290 cluster was detected during preimplantation embryonic development, but a low level of expression was found in rabbit ES-like cells. Differential expression of the ocu-miR-302 cluster and ocu-miR-512 miRNA was detected in rabbit trophoblast and embryoblast. We also found that Lefty has two potential target sites in its 3'UTR for ocu-miR-302a and its expression level increased upon ocu-miR-302a inhibition. We suggest that the expression of the ocu-miR-302 cluster is characteristic of the rabbit ES-like cell, while the ocu-miR-290 cluster may play a crucial role during early embryonic development. This study presents the first identification, to our knowledge, of pluripotency-associated miRNAs in rabbit preimplantation embryos and ES-like cells, which can open up new avenues to investigate the regulatory function of ocu-miRNAs in embryonic development and stem cell biology.


Subject(s)
Embryo, Mammalian/metabolism , Embryonic Development , MicroRNAs/metabolism , Pluripotent Stem Cells/metabolism , Animals , Base Sequence , Cells, Cultured , Embryonic Stem Cells/metabolism , Female , Gene Library , Humans , Molecular Sequence Data , Promoter Regions, Genetic , Rabbits , Sequence Analysis, DNA
4.
Stem Cells Dev ; 21(5): 814-28, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-22149974

ABSTRACT

Although mesenchymal stem cells (MSCs) of distinct tissue origin have a large number of similarities and differences, it has not been determined so far whether tissue-resident MSCs are the progenies of one ancestor cell lineage or the results of parallel cell developmental events. Here we compared the expression levels of 177 genes in murine MSCs derived from adult and juvenile bone marrow and adult adipose tissue, as well as juvenile spleen, thymus, and aorta wall by quantitative real-time polymerase chain reaction and the results were partially validated at protein level. All MSC lines uniformly expressed a large set of genes including well-known mesenchymal markers, such as α-smooth muscle actin, collagen type I α-chain, GATA6, Mohawk, and vimentin. In contrast, pluripotency genes and the early mesodermal marker T-gene were not expressed. On the other hand, different MSC lines consistently expressed distinct patterns of Hox genes determining the positional identity of a given cell population. Moreover, MSCs of different origin expressed a few other transcription factors also reflecting their topological identity and so the body segment or organ to which they normally contributed in vivo: (1) thymus-derived cells specifically expressed Tbx5 and Pitx2; (2) spleen-derived MSCs were characterized with Tlx1 and Nkx2.5; (3) Pitx1 designated femoral bone marrow cells and (4) En2 appeared in aorta wall-derived MSCs. Thus, MSCs exhibited topographic identity and memory even after long-term cultivation in vitro. On the basis of these results, we suggest that postnatal MSCs isolated from different anatomical sites descend from precursor cells developing in the postsegmentation mesoderm.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Developmental , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesoderm/cytology , Adipose Tissue/cytology , Adipose Tissue/growth & development , Animals , Aorta/cytology , Aorta/growth & development , Blotting, Western , Bone Marrow Cells/cytology , Cell Lineage/genetics , Cells, Cultured , Cluster Analysis , Flow Cytometry , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mesoderm/growth & development , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Paired Box Transcription Factors/genetics , Paired Box Transcription Factors/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Spleen/cytology , Spleen/growth & development , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Thymus Gland/cytology , Thymus Gland/growth & development , Time Factors
5.
Differentiation ; 81(1): 11-24, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20864249

ABSTRACT

The mmu-miR-290-295 cluster codes for a family of microRNAs (miRNAs) that are expressed de novo during early embryogenesis and are specific for mouse embryonic stem cells (ESC) and embryonic carcinoma cells (ECC). Detailed sequence analysis and alignment studies of miR-290-295 precursors demonstrated that the cluster has evolved by repeated duplication events of the ancient miR-290 precursor. We show that under serum starvation, overexpression of miR-290-295 miRNAs withhold ES cells from early differentiation, ensures their high proliferation rate and capacity for forming alkaline phosphate positive colonies. Transcriptome analysis revealed that differentiation related marker genes are underexpressed upon high miR-290-295 level. Importantly, miR-290-295 overexpression prevents ES cells from accumulation in G1 phase at low serum level, and seems to regulate cell cycle in different phases. Our data underline that miR-290-295 miRNAs contribute to the natural absence of G1 checkpoint in embryonic stem cells. We define the cell cycle regulators Wee1 and Fbxl5 as potential direct targets of miR-290-295 miRNAs in vitro. Our results suggest that miR-290-295 miRNAs exhibit their effect predominantly through the regulation of cell cycle phase distribution.


Subject(s)
Cell Cycle/physiology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , MicroRNAs/physiology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Animals , Blotting, Western , Cell Differentiation , Cell Proliferation , Cells, Cultured , Culture Media , Electroporation , Fluorescent Antibody Technique , Gene Duplication , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genetic Markers , Mice , MicroRNAs/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...