Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Intell Neurosci ; 2022: 4879942, 2022.
Article in English | MEDLINE | ID: mdl-35371208

ABSTRACT

Recognition of activities in the video is an important field in computer vision. Many successful works have been done on activity recognition and they achieved acceptable results in recent years. However, their training is completely static, meaning that all classes are taught to the system in one training step. The system is only able to recognize the equivalent classes. The main disadvantage of this type of training is that if new classes need to be taught to the system, the system must be retrained from scratch and all classes retaught to the system. This specification has many challenges, such as storing and retaining data and respending training costs. We propose an approach for training the action recognition system in video data which can teach new classes to the system without the need for previous data. We will provide an incremental learning algorithm for class recognition tasks in video data. Two different approaches are combined to prevent catastrophic forgetting in the proposed algorithm. In the proposed incremental learning algorithm, two approaches are introduced and used to maintain network information in combination. These two approaches are network sharing and network knowledge distillation. We introduce a neural network architecture for action recognition to understand and represent the video data. We propose the distillation of network knowledge at the classification and feature level, which can be divided into spatial and temporal parts at the feature level. We also suggest initializing new classifiers using previous classifiers. The proposed algorithm is evaluated on the USCF101, HMDB51, and Kinetics-400 datasets. We will consider various factors such as the amount of distillation knowledge, the number of new classes and the incremental learnings stages, and their impact on the final recognition system. Finally, we will show that the proposed algorithm can teach new classes to the recognition system without forgetting the previous classes and does not need the previous data or exemplar data.


Subject(s)
Algorithms , Neural Networks, Computer
2.
Comput Intell Neurosci ; 2021: 9922697, 2021.
Article in English | MEDLINE | ID: mdl-34211548

ABSTRACT

Recognition of human activities is an essential field in computer vision. The most human activity consists of the interaction between humans and objects. Many successful works have been done on human-object interaction (HOI) recognition and achieved acceptable results in recent years. Still, they are fully supervised and need to train labeled data for all HOIs. Due to the enormous space of human-object interactions, listing and providing the training data for all possible categories is costly and impractical. We propose an approach for scaling human-object interaction recognition in video data through the zero-shot learning technique to solve this problem. Our method recognizes a verb and an object from the video and makes an HOI class. Recognition of the verbs and objects instead of HOIs allows identifying a new combination of verbs and objects. So, a new HOI class can be identified, which is not seen by the recognizer system. We introduce a neural network architecture that can understand and represent the video data. The proposed system learns verbs and objects from available training data at the training phase and can identify the verb-object pairs in a video at test time. So, the system can identify the HOI class with different combinations of objects and verbs. Also, we propose to use lateral information for combining the verbs and the objects to make valid verb-object pairs. It helps to prevent the detection of rare and probably wrong HOIs. The lateral information comes from word embedding techniques. Furthermore, we propose a new feature aggregation method for aggregating extracted high-level features from video frames before feeding them to the classifier. We illustrate that this feature aggregation method is more effective for actions that include multiple subactions. We evaluated our system by recently introduced Charades challengeable dataset, which has lots of HOI categories in videos. We show that our proposed system can detect unseen HOI classes in addition to the acceptable recognition of seen types. Therefore, the number of classes identifiable by the system is greater than the number of classes used for training.


Subject(s)
Neural Networks, Computer , Pattern Recognition, Automated , Human Activities , Humans , Learning , Visual Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...