Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 16: 546, 2015 Jul 25.
Article in English | MEDLINE | ID: mdl-26223308

ABSTRACT

BACKGROUND: Silene latifolia represents one of the best-studied plant sex chromosome systems. A new approach using RNA-seq data has recently identified hundreds of new sex-linked genes in this species. However, this approach is expected to miss genes that are either not expressed or are expressed at low levels in the tissue(s) used for RNA-seq. Therefore other independent approaches are needed to discover such sex-linked genes. RESULTS: Here we used 10 well-characterized S. latifolia sex-linked genes and their homologs in Silene vulgaris, a species without sex chromosomes, to screen BAC libraries of both species. We isolated and sequenced 4 Mb of BAC clones of S. latifolia X and Y and S. vulgaris genomic regions, which yielded 59 new sex-linked genes (with S. vulgaris homologs for some of them). We assembled sequences that we believe represent the tip of the Xq arm. These sequences are clearly not pseudoautosomal, so we infer that the S. latifolia X has a single pseudoautosomal region (PAR) on the Xp arm. The estimated mean gene density in X BACs is 2.2 times lower than that in S. vulgaris BACs, agreeing with the genome size difference between these species. Gene density was estimated to be extremely low in the Y BAC clones. We compared our BAC-located genes with the sex-linked genes identified in previous RNA-seq studies, and found that about half of them (those with low expression in flower buds) were not identified as sex-linked in previous RNA-seq studies. We compiled a set of ~70 validated X/Y genes and X-hemizygous genes (without Y copies) from the literature, and used these genes to show that X-hemizygous genes have a higher probability of being undetected by the RNA-seq approach, compared with X/Y genes; we used this to estimate that about 30% of our BAC-located genes must be X-hemizygous. The estimate is similar when we use BAC-located genes that have S. vulgaris homologs, which excludes genes that were gained by the X chromosome. CONCLUSIONS: Our BAC sequencing identified 59 new sex-linked genes, and our analysis of these BAC-located genes, in combination with RNA-seq data suggests that gene losses from the S. latifolia Y chromosome could be as high as 30 %, higher than previous estimates of 10-20%.


Subject(s)
Chromosomes, Plant/genetics , Evolution, Molecular , Sex Determination Processes , Silene/genetics , Base Sequence , Gene Expression Regulation, Plant , Molecular Sequence Data , Sex Chromosomes/genetics , Silene/growth & development
2.
Ann Bot ; 114(3): 539-48, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25091207

ABSTRACT

BACKGROUND AND AIMS: About 6 % of an estimated total of 240 000 species of angiosperms are dioecious. The main precursors of this sexual system are thought to be monoecy and gynodioecy. A previous angiosperm-wide study revealed that many dioecious species have evolved through the monoecy pathway; some case studies and a large body of theoretical research also provide evidence in support of the gynodioecy pathway. If plants have evolved through the gynodioecy pathway, gynodioecious and dioecious species should co-occur in the same genera. However, to date, no large-scale analysis has been conducted to determine the prevalence of the gynodioecy pathway in angiosperms. In this study, this gap in knowledge was addressed by performing an angiosperm-wide survey in order to test for co-occurrence as evidence of the gynodioecy pathway. METHODS: Data from different sources were compiled to obtain (to our knowledge) the largest dataset on gynodioecy available, with 275 genera that include at least one gynodioecious species. This dataset was combined with a dioecy dataset from the literature, and a study was made of how often dioecious and gynodioecious species could be found in the same genera using a contingency table framework. KEY RESULTS: It was found that, overall, angiosperm genera with both gynodioecious and dioecious species occur more frequently than expected, in agreement with the gynodioecy pathway. Importantly, this trend holds when studying different classes separately (or sub-classes, orders and families), suggesting that the gynodioecy pathway is not restricted to a few taxa but may instead be widespread in angiosperms. CONCLUSIONS: This work complements that previously carried out on the monoecy pathway and suggests that gynodioecy is also a common pathway in angiosperms. The results also identify angiosperm families where some (or all) dioecious species may have evolved from gynodioecious precursors. These families could be the targets of future small-scale studies on transitions to dioecy taking phylogeny explicitly into account.


Subject(s)
Biological Evolution , Magnoliopsida/physiology , Phylogeny , Reproduction , Species Specificity
3.
J Evol Biol ; 27(7): 1478-90, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24797166

ABSTRACT

In angiosperms, dioecious clades tend to have fewer species than their nondioecious sister clades. This departure from the expected equal species richness in the standard sister clade test has been interpreted as implying that dioecious clades diversify less and has initiated a series of studies suggesting that dioecy might be an 'evolutionary dead end'. However, two of us recently showed that the 'equal species richness' null hypothesis is not valid in the case of derived char acters, such as dioecy, and proposed a new test for sister clade comparisons; preliminary results, using a data set available in the litterature, indicated that dioecious clades migth diversify more than expected. However, it is crucial for this new test to distinguish between ancestral and derived cases of dioecy, a criterion that was not taken into account in the available data set. Here, we present a new data set that was obtained by searching the phylogenetic literature on more than 600 completely dioecious angiosperm genera and identifying 115 sister clade pairs for which dioecy is likely to be derived (including > 50% of the dioecious species). Applying the new sister clade test to this new dataset, we confirm the preliminary result that dioecy is associated with an increased diversification rate, a result that does not support the idea that dioecy is an evolutionary dead end in angiosperms. The traits usually associated with dioecy, that is, an arborescent growth form, abiotic pollination, fleshy fruits or a tropical distribution, do not influence the diversification rate. Rather than a low diversification rate, the observed species richness patterns of dioecious clades seem to be better explained by a low transition rate to dioecy and frequent losses.


Subject(s)
Biological Evolution , Genetic Variation , Magnoliopsida/physiology , Biodiversity , Magnoliopsida/anatomy & histology , Magnoliopsida/genetics , Phylogeny , Reproduction/physiology
4.
J Evol Biol ; 26(2): 335-46, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23206219

ABSTRACT

Dioecy (i.e. having separate sexes) is a rather rare breeding system in flowering plants. Such rareness may result from a high probability of extinction in dioecious species because of less efficient dispersal and the costs of sexual selection, which are expected to harm dioecious species' survival on the long term. These handicaps should decrease the effective population size (Ne) of dioecious species, which in turn should reduce the efficacy of selection. Moreover, sexual selection in dioecious species is expected to specifically affect some genes, which will evolve under positive selection. The relative contribution of these effects is currently unknown and we tried to disentangle them by comparing sequence evolution between dioecious and non-dioecious species in the Silene genus (Caryophyllaceae), where dioecy has evolved at least twice. For the dioecious species in the section Melandrium, where dioecy is the oldest, we found a global reduction of purifying selection, while on some, male-biased genes, positive selection was found. For section Otites, where dioecy evolved more recently, we found no significant differences between dioecious and non-dioecious species. Our results are consistent with the view that dioecy is an evolutionary dead end in flowering plants, although other scenarios for explaining reduced Ne cannot be ruled out. Our results also show that contrasting forces act on the genomes of dioecious plants, and suggest that some time is required before the genome of such plants bears the footprints of dioecy.


Subject(s)
Evolution, Molecular , Silene/genetics , Gene Expression Regulation, Plant , Genes, Plant/genetics , Phylogeny , Reproduction , Selection, Genetic , Silene/classification
5.
Heredity (Edinb) ; 103(1): 5-14, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19367316

ABSTRACT

The genus Silene, studied by Darwin, Mendel and other early scientists, is re-emerging as a system for studying interrelated questions in ecology, evolution and developmental biology. These questions include sex chromosome evolution, epigenetic control of sex expression, genomic conflict and speciation. Its well-studied interactions with the pathogen Microbotryum has made Silene a model for the evolution and dynamics of disease in natural systems, and its interactions with herbivores have increased our understanding of multi-trophic ecological processes and the evolution of invasiveness. Molecular tools are now providing new approaches to many of these classical yet unresolved problems, and new progress is being made through combining phylogenetic, genomic and molecular evolutionary studies with ecological and phenotypic data.


Subject(s)
Ecology , Evolution, Molecular , Models, Biological , Silene/genetics , Basidiomycota/physiology , Chromosomes, Plant/genetics , Plant Diseases/microbiology , Silene/microbiology , Silene/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...