Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 7246, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538643

ABSTRACT

Glioblastoma (GBM) is the most common primary malignant cancer of the central nervous system. Insufficient oxygenation (hypoxia) has been linked to GBM invasion and aggression, leading to poor patient outcomes. Hypoxia induces gene expression for cellular adaptations. However, GBM is characterized by high intertumoral (molecular subtypes) and intratumoral heterogeneity (cell states), and it is not well understood to what extent hypoxia triggers patient-specific gene responses and cellular diversity in GBM. Here, we surveyed eight patient-derived GBM stem cell lines for invasion phenotypes in 3D culture, which identified two GBM lines showing increased invasiveness in response to hypoxia. RNA-seq analysis of the two patient GBM lines revealed a set of shared hypoxia response genes concerning glucose metabolism, angiogenesis, and autophagy, but also a large set of patient-specific hypoxia-induced genes featuring cell migration and anti-inflammation, highlighting intertumoral diversity of hypoxia responses in GBM. We further applied the Shared GBM Hypoxia gene signature to single cell RNA-seq datasets of glioma patients, which showed that hypoxic cells displayed a shift towards mesenchymal-like (MES) and astrocyte-like (AC) states. Interestingly, in response to hypoxia, tumor cells in IDH-mutant gliomas displayed a strong shift to the AC state, whereas tumor cells in IDH-wildtype gliomas mainly shifted to the MES state. This distinct hypoxia response of IDH-mutant gliomas may contribute to its more favorable prognosis. Our transcriptomic studies provide a basis for future approaches to better understand the diversity of hypoxic niches in gliomas.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioma/pathology , Glioblastoma/pathology , Hypoxia/genetics , Hypoxia/metabolism , Cell Line, Tumor , Gene Expression Profiling , Neoplastic Stem Cells/metabolism , Cell Hypoxia/genetics
2.
Immunity ; 56(8): 1825-1843.e6, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37451265

ABSTRACT

Glioblastoma (GBM), a highly lethal brain cancer, is notorious for immunosuppression, but the mechanisms remain unclear. Here, we documented a temporospatial patterning of tumor-associated myeloid cells (TAMs) corresponding to vascular changes during GBM progression. As tumor vessels transitioned from the initial dense regular network to later scant and engorged vasculature, TAMs shifted away from perivascular regions and trafficked to vascular-poor areas. This process was heavily influenced by the immunocompetence state of the host. Utilizing a sensitive fluorescent UnaG reporter to track tumor hypoxia, coupled with single-cell transcriptomics, we revealed that hypoxic niches attracted and sequestered TAMs and cytotoxic T lymphocytes (CTLs), where they were reprogrammed toward an immunosuppressive state. Mechanistically, we identified chemokine CCL8 and cytokine IL-1ß as two hypoxic-niche factors critical for TAM trafficking and co-evolution of hypoxic zones into pseudopalisading patterns. Therefore, perturbation of TAM patterning in hypoxic zones may improve tumor control.


Subject(s)
Glioblastoma , T-Lymphocytes, Cytotoxic , Humans , Tumor-Associated Macrophages , Macrophages , Immunosuppression Therapy , Glioblastoma/pathology , Tumor Microenvironment
3.
Cell Cycle ; 11(17): 3324-30, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22895174

ABSTRACT

The Retinoblastoma protein (Rb) is important in the control of cell proliferation and apoptosis. Its activity is controlled by reversible phosphorylation on several serine and threonine residues. When Rb is hypophosphorylated, it inhibits proliferation by preventing passage through the G 1- S phase transition. Hyperphosphorylated Rb promotes cell cycle progression. The role of Rb phosphorylation in the control of apoptosis is largely unknown, although several apoptotic stimuli result in dephosphorylation of Rb. It may be that dephosphorylation of specific amino acids signals apoptosis vs. cell cycle arrest. Using glutamic acid mutagenesis, we have generated 15 single phosphorylation site mutants of Rb to alter serine/threonine to glutamic acid to mimic the phosphorylated state. By calcium phosphate transfection, mutant plasmids were introduced into C33A Rb-null cells, and apoptosis was induced using UV. Apoptosis was measured by ELISA detection of degraded DNA and by immunoblotting to assess proteolytic cleavage of PARP. Our results show that only mutation of threonine-821 to glutamic acid (T821E) blocked apoptosis by 50%, whereas other sites tested had little effect. In Rb-null Saos-2 and SKUT-1 cells, the T821E mutation also blocked apoptosis induced by the cdk inhibitor, Roscovitine, by 50%. In addition, we show that endogenous Rb is dephosphorylated on threonine-821 when cells are undergoing apoptosis. Thus, our data indicates that dephosphorylation of threonine-821 of Rb is required for cells to undergo apoptosis.


Subject(s)
Apoptosis/physiology , Retinoblastoma Protein/metabolism , S Phase Cell Cycle Checkpoints/physiology , Apoptosis/radiation effects , Blotting, Western , Cell Line, Tumor , Cyclin-Dependent Kinases/antagonists & inhibitors , Enzyme-Linked Immunosorbent Assay , Glutamic Acid , Humans , Mutagenesis , Mutation, Missense/genetics , Phosphorylation , Purines/pharmacology , Retinoblastoma Protein/genetics , Roscovitine , S Phase Cell Cycle Checkpoints/genetics , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...