Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Tuberc Other Mycobact Dis ; 36: 100444, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38708036

ABSTRACT

Tuberculosis (TB) is a leading cause of mortality worldwide, and resistance to anti-tuberculosis drugs is a challenge to effective treatment. Multi-drug resistant TB (MDR-TB) can be difficult to treat, requiring long durations of therapy and the use of second line drugs, increasing a patient's risk for toxicities and treatment failure. Given the challenges treating MDR-TB, clinicians can improve the likelihood of successful outcomes by utilizing therapeutic drug monitoring (TDM). TDM is a clinical technique that utilizes measured drug concentrations from the patient to adjust therapy, increasing likelihood of therapeutic drug concentrations while minimizing the risk of toxic drug concentrations. This review paper provides an overview of the TDM process, pharmacokinetic parameters for MDR-TB drugs, and recommendations for dose adjustments following TDM.

2.
Expert Rev Clin Pharmacol ; 17(7): 537-547, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38339997

ABSTRACT

INTRODUCTION: Tuberculosis (TB) is a leading infectious disease cause of mortality worldwide, especially for people living with human immunodeficiency virus (PLWH). Treating TB in PLWH can be challenging due to numerous drug interactions. AREAS COVERED: This review discusses drug interactions between antitubercular and antiretroviral drugs. Due to its clinical importance, initiation of antiretroviral therapy in patients requiring TB treatment is discussed. Special focus is placed on the rifamycin class, as it accounts for the majority of interactions. Clinically relevant guidance is provided on how to manage these interactions. An additional section on utilizing therapeutic drug monitoring (TDM) to optimize drug exposure and minimize toxicities is included. EXPERT OPINION: Antitubercular and antiretroviral coadministration can be successfully managed. TDM can be used to optimize drug exposure and minimize toxicity risk. As new TB and HIV drugs are discovered, additional research will be needed to assess for clinically relevant drug interactions.


Subject(s)
Anti-HIV Agents , Antitubercular Agents , Drug Interactions , Drug Monitoring , HIV Infections , Tuberculosis , Humans , Tuberculosis/drug therapy , HIV Infections/drug therapy , HIV Infections/complications , Antitubercular Agents/administration & dosage , Antitubercular Agents/adverse effects , Antitubercular Agents/pharmacokinetics , Antitubercular Agents/pharmacology , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/adverse effects , Anti-HIV Agents/pharmacokinetics , Drug Monitoring/methods , Rifamycins/administration & dosage , Rifamycins/pharmacokinetics , Rifamycins/adverse effects
3.
Ther Drug Monit ; 46(1): 95-101, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38018847

ABSTRACT

BACKGROUND: Antimicrobial resistance is a growing health concern worldwide. The objective of this study was to evaluate the effect of beta-lactam infusion on the emergence of bacterial resistance in patients with severe pneumonia in the intensive care unit. METHODS: Adult intensive care patients receiving cefepime, meropenem, or piperacillin-tazobactam for severe pneumonia caused by Gram-negative bacteria were randomized to receive beta-lactams as an intermittent (30 minutes) or continuous (24 hours) infusion. Respiratory samples for culture and susceptibility testing, with minimum inhibitory concentrations (MIC), were collected once a week for up to 4 weeks. Beta-lactam plasma concentrations were measured and therapeutic drug monitoring was performed using Bayesian software as the standard of care. RESULTS: The study was terminated early owing to slow enrollment. Thirty-five patients were enrolled in this study. Cefepime (n = 22) was the most commonly prescribed drug at randomization, followed by piperacillin (n = 8) and meropenem (n = 5). Nineteen patients were randomized into the continuous infusion arm and 16 into the intermittent infusion arm. Pseudomonas aeruginosa was the most common respiratory isolate (n = 19). Eighteen patients were included in the final analyses. No differences in bacterial resistance were observed between arms ( P = 0.67). No significant differences in superinfection ( P = 1), microbiological cure ( P = 0.85), clinical cure at day 7 ( P = 0.1), clinical cure at end of therapy ( P = 0.56), mortality ( P = 1), intensive care unit length of stay ( P = 0.37), or hospital length of stay ( P = 0.83) were observed. Achieving 100% ƒT > MIC ( P = 0.04) and ƒT > 4 × MIC ( P = 0.02) increased likelihood of clinical cure at day 7 of therapy. CONCLUSIONS: No differences in the emergence of bacterial resistance or clinical outcomes were observed between intermittent and continuous infusions. Pharmacokinetic/pharmacodynamic target attainment may be associated with a clinical cure on day 7.


Subject(s)
Anti-Bacterial Agents , Pneumonia , Adult , Humans , Meropenem/therapeutic use , beta-Lactams/therapeutic use , Cefepime/therapeutic use , Bayes Theorem , Piperacillin , Pneumonia/drug therapy , Microbial Sensitivity Tests
4.
Antibiotics (Basel) ; 12(12)2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38136730

ABSTRACT

BACKGROUND: The objective was to identify associations between beta-lactam pharmacokinetic/pharmacodynamic (PK/PD) targets and Gram-negative bacteria resistance emergence in patients. METHODS: Retrospective data were collected between 2016 to 2019 at the University of Florida Health-Shands Hospital in Gainesville, FL. Adult patients with two Gram-negative isolates receiving cefepime, meropenem, or piperacillin-tazobactam and who had plasma beta-lactam concentrations were included. Beta-lactam exposures and time free drug concentrations that exceeded minimum inhibitory concentrations (ƒT > MIC), four multiples of MIC (ƒT > 4× MIC), and free area under the time concentration curve to MIC (ƒAUC/MIC) were generated. Resistance emergence was defined as any increase in MIC or two-fold increase in MIC. Multiple regression analysis assessed the PK/PD parameter impact on resistance emergence. RESULTS: Two hundred fifty-six patients with 628 isolates were included. The median age was 58 years, and 59% were males. Cefepime was the most common beta-lactam (65%) and Pseudomonas aeruginosa the most common isolate (43%). The mean daily ƒAUC/MIC ≥ 494 was associated with any increase in MIC (p = 0.002) and two-fold increase in MIC (p = 0.004). The daily ƒAUC/MIC ≥ 494 was associated with decreased time on antibiotics (p = 0.008). P. aeruginosa was associated with any increase in MIC (OR: 6.41, 95% CI [3.34-12.28]) or 2× increase in MIC (7.08, 95% CI [3.56-14.07]). CONCLUSIONS: ƒAUC/MIC ≥ 494 may be associated with decreased Gram-negative resistance emergence.

5.
Int J Antimicrob Agents ; 62(4): 106939, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37517627

ABSTRACT

BACKGROUND: Implementation of newer anti-tuberculosis (TB) drugs may prolong the QT interval, increasing the risk of arrythmias and sudden cardiac death. The potential for cardiac adverse events has prompted recommendations for frequent cardiac monitoring during treatment. However, unknowns remain, including the association between drug concentrations and QT interval. METHODS: An observational prospective cohort study design was used. Patients undergoing treatment for drug-resistant TB in Georgia were assessed. Serial blood samples were collected at 4-6 weeks for pharmacokinetics. Electrocardiograms were recommended to be performed monthly. A generalized estimating equation spline model was used to investigate (1) the effect difference between bedaquiline and delamanid, (2) the cumulative effect of number of anti-TB drugs, and (3) the relationship between serum drug concentrations on QTc interval. RESULTS: Among 94 patients receiving either bedaquiline (n = 64) or delamanid (n = 30)-based treatment, most were male (82%), and the mean age was 39 years. The mean maximum QTc increase during the first six months was 37.5 ms (IQR: 17.8-56.8). Bedaquiline- and delamanid-based regimens displayed similar increased mean QTc change from baseline during drug administration (P = 0.12). Increasing number of anti-TB drugs was associated with an increased QTc (P = 0.01), but participants trended back towards baseline after drug discontinuation (P = 0.25). A significant association between AUC, Cmin, Cmax, and increased QTc interval was found for bedaquiline (months 1-6) and levofloxacin (months 1-12). CONCLUSION: Bedaquiline- and delamanid-based regimens and increasing number of QT prolonging agents led to modest increases in the QTc interval with minimal clinical effect.


Subject(s)
Long QT Syndrome , Nitroimidazoles , Tuberculosis, Multidrug-Resistant , Humans , Male , Adult , Female , Antitubercular Agents/adverse effects , Antitubercular Agents/pharmacokinetics , Prospective Studies , Diarylquinolines/adverse effects , Nitroimidazoles/adverse effects , Nitroimidazoles/pharmacokinetics , Oxazoles/adverse effects , Oxazoles/pharmacokinetics , Tuberculosis, Multidrug-Resistant/drug therapy , Long QT Syndrome/chemically induced
6.
Front Pharmacol ; 13: 1048653, 2022.
Article in English | MEDLINE | ID: mdl-36578553

ABSTRACT

Background: Tuberculosis meningitis (TBM) is the most lethal form of TB. It is difficult to treat in part due to poor or uncertain drug penetration into the central nervous system (CNS). To help fill this knowledge gap, we evaluated the cerebrospinal fluid (CSF) concentrations of fluoroquinolones and carbapenems in patients being treated for TBM. Methods: Serial serum and CSF samples were collected from hospitalized patients being treated for TBM. CSF was collected from routine lumbar punctures between alternating timepoints of 2 and 6 h after drug administration to capture early and late CSF penetration. Rich serum sampling was collected after drug administration on day 28 for non-compartmental analysis. Results: Among 22 patients treated for TBM (8 with confirmed disease), there was high use of fluoroquinolones (levofloxacin, 21; moxifloxacin, 10; ofloxacin, 6) and carbapenems (imipenem, 11; meropenem, 6). Median CSF total concentrations of levofloxacin at 2 and 6 h were 1.34 mg/L and 3.36 mg/L with adjusted CSF/serum ratios of 0.41 and 0.63, respectively. For moxifloxacin, the median CSF total concentrations at 2 and 6 h were 0.78 mg/L and 1.02 mg/L with adjusted CSF/serum ratios of 0.44 and 0.62. Serum and CSF concentrations of moxifloxacin were not affected by rifampin use. Among the 76 CSF samples measured for carbapenem concentrations, 79% were undetectable or below the limit of detection. Conclusion: Fluoroquinolones demonstrated high CSF penetration indicating their potential usefulness for the treatment of TBM. Carbapenems had lower than expected CSF concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL
...