Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Appl Energy Mater ; 6(22): 11560-11572, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38037632

ABSTRACT

The search for safe electrolytes to promote the application of lithium-sulfur (Li-S) batteries may be supported by the investigation of viscous glyme solvents. Hence, electrolytes using nonflammable tetraethylene glycol dimethyl ether added by lowly viscous 1,3-dioxolane (DOL) are herein thoroughly investigated for sustainable Li-S cells. The electrolytes are characterized by low flammability, a thermal stability of ∼200 °C, ionic conductivity exceeding 10-3 S cm-1 at 25 °C, a Li+ transference number of ∼0.5, electrochemical stability window from 0 to ∼4.4 V vs Li+/Li, and a Li stripping-deposition overpotential of ∼0.02 V. The progressive increase of the DOL content from 5 to 15 wt % raises the activation energy for Li+ motion, lowers the transference number, slightly limits the anodic stability, and decreases the Li/electrolyte resistance. The electrolytes are used in Li-S cells with a composite consisting of sulfur and multiwalled carbon nanotubes mixed in the 90:10 weight ratio, exploiting an optimized current collector. The cathode is preliminarily studied in terms of structure, thermal behavior, and morphology and exploited in a cell using standard electrolyte. This cell performs over 200 cycles, with sulfur loading increased to 5.2 mg cm-2 and the electrolyte/sulfur (E/S) ratio decreased to 6 µL mg-1. The above sulfur cathode and the glyme-based electrolytes are subsequently combined in safe Li-S batteries, which exhibit cycle life and delivered capacity relevantly influenced by the DOL content within the studied concentration range.

2.
ACS Appl Mater Interfaces ; 15(33): 39218-39233, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37552158

ABSTRACT

Lithium-oxygen (Li-O2) batteries are nowadays among the most appealing next-generation energy storage systems in view of a high theoretical capacity and the use of transition-metal-free cathodes. Nevertheless, the practical application of these batteries is still hindered by limited understanding of the relationships between cell components and performances. In this work, we investigate a Li-O2 battery by originally screening different gas diffusion layers (GDLs) characterized by low specific surface area (<40 m2 g-1) with relatively large pores (absence of micropores), graphitic character, and the presence of a fraction of the hydrophobic PTFE polymer on their surface (<20 wt %). The electrochemical characterization of Li-O2 cells using bare GDLs as the support indicates that the oxygen reduction reaction (ORR) occurs at potentials below 2.8 V vs Li+/Li, while the oxygen evolution reaction (OER) takes place at potentials higher than 3.6 V vs Li+/Li. Furthermore, the relatively high impedance of the Li-O2 cells at the pristine state remarkably decreases upon electrochemical activation achieved by voltammetry. The Li-O2 cells deliver high reversible capacities, ranging from ∼6 to ∼8 mA h cm-2 (referred to the geometric area of the GDLs). The Li-O2 battery performances are rationalized by the investigation of a practical Li+ diffusion coefficient (D) within the cell configuration adopted herein. The study reveals that D is higher during ORR than during OER, with values depending on the characteristics of the GDL and on the cell state of charge. Overall, D values range from ∼10-10 to ∼10-8 cm2 s-1 during the ORR and ∼10-17 to ∼10-11 cm2 s-1 during the OER. The most performing GDL is used as the support for the deposition of a substrate formed by few-layer graphene and multiwalled carbon nanotubes to improve the reaction in a Li-O2 cell operating with a maximum specific capacity of 1250 mA h g-1 (1 mA h cm-2) at a current density of 0.33 mA cm-2. XPS on the electrode tested in our Li-O2 cell setup suggests the formation of a stable solid electrolyte interphase at the surface which extends the cycle life.

3.
Chemistry ; 29(45): e202301345, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37203374

ABSTRACT

A solid polymer electrolyte has been developed and employed in lithium-metal batteries of relevant interest. The material includes crystalline poly(ethylene glycol)dimethyl ether (PEGDME), LiTFSI and LiNO3 salts, and a SiO2 ceramic filler. The electrolyte shows ionic conductivity more than 10-4  S cm-1 at room temperature and approaching 10-3  S cm-1 at 60 °C, a Li+ -transference number exceeding 0.3, electrochemical stability from 0 to 4.4 V vs. Li+ /Li, lithium stripping/deposition overvoltage below 0.08 V, and electrode/electrolyte interphase resistance of 400 Ω. Thermogravimetry indicates that the electrolyte stands up to 200 °C without significant weight loss, while FTIR spectroscopy suggests that the LiTFSI conducting salt dissolves in the polymer. The electrolyte is used in solid-state cells with various cathodes, including LiFePO4 olivine exploiting the Li-insertion, sulfur-carbon composite operating through Li conversion, and an oxygen electrode in which reduction and evolution reactions (i. e., ORR/OER) evolve on a carbon-coated gas diffusion layer (GDL). The cells operate reversibly at room temperature with a capacity of 140 mA h g-1 at 3.4 V for LiFePO4 , 400 mA h g-1 at 2 V for sulfur electrode, and 500 mA h g-1 at 2.5 V for oxygen. The results suggest that the electrolyte could be applied in room-temperature solid polymer cells.

4.
ChemSusChem ; 16(6): e202202095, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36562306

ABSTRACT

Diffusion processes at the electrode/electrolyte interphase drives the performance of lithium-sulfur batteries, and activated carbon (AC) can remarkably vehicle ions and polysulfide species throughout the two-side liquid/solid region of the interphase. We reveal original findings such as the values of the diffusion coefficient at various states of charge of a Li-S battery using a highly porous AC, its notable dependence on the adopted techniques, and the correlation of the diffusion trend with the reaction mechanism. X-ray photoelectron spectroscopy (XPS) and X-ray energy dispersive spectroscopy (EDS) are used to identify in the carbon derived from bioresidues heteroatoms such as N, S, O and P, which can increase the polarity of the C framework. The transport properties are measured by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic intermittent titration technique (GITT). The study reveals Li+ -diffusion coefficient (DLi + ) depending on the technique, and values correlated with the cell state of charge. EIS, CV, and GITT yield a DLi + within 10-7 -10-8  cm2 s-1 , 10-8 -10-9  cm2 s-1 , and 10-6 -10-12  cm2 s-1 , respectively, dropping down at the fully discharged state and increasing upon charge. GITT allows the evaluation of DLi + during the process and evidences the formation of low-conducting media upon discharge. The sulfur composite delivers in a Li-cell a specific capacity ranging from 1300 mAh g-1 at 0.1 C to 700 mAh g-1 at 2C with a S loading of 2 mg cm-2 , and from 1000 to 800 mAh g-1 at 0.2C when the S loading is raised to 6 mg cm-2 .

5.
Energy Fuels ; 36(16): 9321-9328, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36016761

ABSTRACT

Lithium-sulfur battery of practical interest requires thin-layer support to achieve acceptable volumetric energy density. However, the typical aluminum current collector of Li-ion battery cannot be efficiently used in the Li/S system due to the insulating nature of sulfur and a reaction mechanism involving electrodeposition of dissolved polysulfides. We study the electrochemical behavior of a Li/S battery using a carbon-coated Al current collector in which the low thickness, the high electronic conductivity, and, at the same time, the host ability for the reaction products are allowed by a binder-free few-layer graphene (FLG) substrate. The FLG enables a sulfur electrode having a thickness below 100 µm, fast kinetics, low impedance, and an initial capacity of 1000 mAh gS -1 with over 70% retention after 300 cycles. The Li/S cell using FLG shows volumetric and gravimetric energy densities of 300 Wh L-1 and 500 Wh kg-1, respectively, which are values well competing with commercially available Li-ion batteries.

6.
Small Methods ; 5(10): e2100596, 2021 10.
Article in English | MEDLINE | ID: mdl-34927950

ABSTRACT

The degradation mechanism in a sodium cell of a layered Na0.48 Al0.03 Co0.18 Ni0.18 Mn0.47 O2 (NCAM) cathode with P3/P2 structure is investigated by revealing the changes in microstructure and composition upon cycling. The work aims to rationalize the gradual performance decay and the alteration of the electrochemical response in terms of polarization, voltage signature, and capacity loss. Spatial reconstructions of the electrode by X-ray computed tomography at the nanoscale supported by quantitative and qualitative analyses show fractures and deformations in the cycled layered metal-oxide particles, as well as inorganic side compounds deposited on the material. These irreversible morphological modifications reflect structural heterogeneities across the cathode particles due to formation of various domains with different Na+ intercalation degrees. Besides, X-ray photoelectron spectroscopy data suggest that the latter inorganic species in the cycled electrode are mainly composed of NaF, Na2 O, and NaCO3 formed by parasitic electrolyte decomposition. The precipitation of these insulating compounds at the electrode/electrolyte interphase and the related structural stresses induced in the material lead to a decrease in cathode particle size and partial loss of electrochemical activity. The retention of the NCAM phase after cycling suggests that electrolyte upgrade may improve the performance of the cathode to achieve practical application for sustainable energy storage.

7.
Energy Fuels ; 35(12): 10284-10292, 2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34276126

ABSTRACT

Lithium-metal batteries employing concentrated glyme-based electrolytes and two different cathode chemistries are herein evaluated in view of a safe use of the highly energetic alkali-metal anode. Indeed, diethylene-glycol dimethyl-ether (DEGDME) and triethylene-glycol dimethyl-ether (TREGDME) dissolving lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium nitrate (LiNO3) in concentration approaching the solvents saturation limit are used in lithium batteries employing either a conversion sulfur-tin composite (S:Sn 80:20 w/w) or a Li+ (de)insertion LiFePO4 cathode. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) clearly show the suitability of the concentrated electrolytes in terms of process reversibility and low interphase resistance, particularly upon a favorable activation. Galvanostatic measurements performed on lithium-sulfur (Li/S) batteries reveal promising capacities at room temperature (25 °C) and a value as high as 1300 mAh gS -1 for the cell exploiting the DEGDME-based electrolyte at 35 °C. On the other hand, the lithium-LiFePO4 (Li/LFP) cells exhibit satisfactory cycling behavior, in particular when employing an additional reduction step at low voltage cutoff (i.e., 1.2 V) during the first discharge to consolidate the solid electrolyte interphase (SEI). This procedure allows a Coulombic efficiency near 100%, a capacity approaching 160 mAh g-1, and relevant retention particularly for the cell using the TREGDME-based electrolyte. Therefore, this work suggests the use of concentrated glyme-based electrolytes, the fine-tuning of the operative conditions, and the careful selection of active materials chemistry as significant steps to achieve practical and safe lithium-metal batteries.

8.
ChemSusChem ; 14(16): 3333-3343, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34165920

ABSTRACT

A full lithium-ion-sulfur cell with a remarkable cycle life was achieved by combining an environmentally sustainable biomass-derived sulfur-carbon cathode and a pre-lithiated silicon oxide anode. X-ray diffraction, Raman spectroscopy, energy dispersive spectroscopy, and thermogravimetry of the cathode evidenced the disordered nature of the carbon matrix in which sulfur was uniformly distributed with a weight content as high as 75 %, while scanning and transmission electron microscopy revealed the micrometric morphology of the composite. The sulfur-carbon electrode in the lithium half-cell exhibited a maximum capacity higher than 1200 mAh gS -1 , reversible electrochemical process, limited electrode/electrolyte interphase resistance, and a rate capability up to C/2. The material showed a capacity decay of about 40 % with respect to the steady-state value over 100 cycles, likely due to the reaction with the lithium metal of dissolved polysulfides or impurities including P detected in the carbon precursor. Therefore, the replacement of the lithium metal with a less challenging anode was suggested, and the sulfur-carbon composite was subsequently investigated in the full lithium-ion-sulfur battery employing a Li-alloying silicon oxide anode. The full-cell revealed an initial capacity as high as 1200 mAh gS -1 , a retention increased to more than 79 % for 100 galvanostatic cycles, and 56 % over 500 cycles. The data reported herein well indicated the reliability of energy storage devices with extended cycle life employing high-energy, green, and safe electrode materials.

9.
J Colloid Interface Sci ; 573: 396-408, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32304949

ABSTRACT

Disordered carbons derived from biomass are herein efficiently used as an alternative anode in lithium-ion battery. Carbon precursor obtained from cherry pit is activated by using either KOH or H3PO4, to increase the specific surface area and enable porosity. Structure, morphology and chemical characteristics of the activated carbons are investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetry (TG), Raman spectroscopy, nitrogen and mercury porosimetry. The electrodes are studied in lithium half-cell by galvanostatic cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The study evidences substantial effect of chemical activation on the carbon morphology, electrode resistance, and electrochemical performance. The materials reveal the typical profile of disordered carbon with initial irreversibility vanishing during cycles. Carbons activated by H3PO4 show higher capacity at the lower C-rates, while those activated by KOH reveal improved reversible capacity at the high currents, with efficiency approaching 100% upon initial cycles, and reversible capacity exceeding 175 mAh g-1. Therefore, the carbons and LiFePO4 cathode are combined in lithium-ion cells delivering 160 mAh g-1 at 2.8 V, with a retention exceeding 95% upon 200 cycles at C/3 rate. Hence, the carbons are suggested as environmentally sustainable anode for Li-ion battery.


Subject(s)
Carbon/chemistry , Electric Power Supplies , Lithium/chemistry , Biomass , Electrodes , Particle Size , Surface Properties
10.
ChemSusChem ; 10(7): 1607-1615, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28074612

ABSTRACT

A ternary CuO-Fe2 O3 -mesocarbon microbeads (MCMB) conversion anode was characterized and combined with a high-voltage Li1.35 Ni0.48 Fe0.1 Mn1.72 O4 spinel cathode in a lithium-ion battery of relevant performance in terms of cycling stability and rate capability. The CuO-Fe2 O3 -MCMB composite was prepared by using high-energy milling, a low-cost pathway that leads to a crystalline structure and homogeneous submicrometrical morphology as revealed by XRD and electron microscopy. The anode reversibly exchanges lithium ions through the conversion reactions of CuO and Fe2 O3 and by insertion into the MCMB carbon. Electrochemical tests, including impedance spectroscopy, revealed a conductive electrode/electrolyte interface that enabled the anode to achieve a reversible capacity value higher than 500 mAh g-1 when cycled at a current of 120 mA g-1 . The remarkable stability of the CuO-Fe2 O3 -MCMB electrode and the suitable characteristics in terms of delivered capacity and voltage-profile retention allowed its use in an efficient full lithium-ion cell with a high-voltage Li1.35 Ni0.48 Fe0.1 Mn1.72 O4 cathode. The cell had a working voltage of 3.6 V and delivered a capacity of 110 mAh gcathode-1 with a Coulombic efficiency above 99 % after 100 cycles at 148 mA gcathode-1 . This relevant performances, rarely achieved by lithium-ion systems that use the conversion reaction, are the result of an excellent cell balance in terms of negative-to-positive ratio, favored by the anode composition and electrochemical features.


Subject(s)
Aluminum Oxide/chemistry , Copper/chemistry , Electric Power Supplies , Ferric Compounds/chemistry , Lithium/chemistry , Magnesium Oxide/chemistry , Microspheres , Electrodes , Green Chemistry Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...