Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 12: 705230, 2021.
Article in English | MEDLINE | ID: mdl-34335538

ABSTRACT

A collection of 177 genomes of Salmonella Typhimurium and its monophasic variant isolated in 2014-2019 from Italian poultry/livestock (n = 165) and foodstuff (n = 12), previously screened for antimicrobial susceptibility and assigned to ST34 and single-locus variants, were studied in-depth to check the presence of the novel mcr-9 gene and to investigate their genetic relatedness by whole genome sequencing (WGS). The study of accessory resistance genes revealed the presence of mcr-9.1 in 11 ST34 isolates, displaying elevated colistin minimum inhibitory concentration values up to 2 mg/L and also a multidrug-resistant (MDR) profile toward up to seven antimicrobial classes. Five of them were also extended-spectrum beta-lactamases producers (bla SHV - 12 type), mediated by the corresponding antimicrobial resistance (AMR) accessory genes. All mcr-9-positive isolates harbored IncHI2-ST1 plasmids. From the results of the Mash analysis performed on all 177 genomes, the 11 mcr-9-positive isolates fell together in the same subcluster and were all closely related. This subcluster included also two mcr-9-negative isolates, and other eight mcr-9-negative ST34 isolates were present within the same parental branch. All the 21 isolates within this branch presented an IncHI2/2A plasmid and a similar MDR gene pattern. In three representative mcr-9-positive isolates, mcr-9 was demonstrated to be located on different IncHI2/IncHI2A large-size (∼277-297 kb) plasmids, using a combined Illumina-Oxford Nanopore WGS approach. These plasmids were also compared by BLAST analysis with publicly available IncHI2 plasmid sequences harboring mcr-9. In our plasmids, mcr-9 was located in a ∼30-kb region lacking different genetic elements of the typical core structure of mcr-9 cassettes. In this region were also identified different genes involved in heavy metal metabolism. Our results underline how genomics and WGS-based surveillance are increasingly indispensable to achieve better insights into the genetic environment and features of plasmid-mediated AMR, as in the case of such IncHI2 plasmids harboring other MDR genes beside mcr-9, that can be transferred horizontally also to other major Salmonella serovars spreading along the food chain.

2.
Vet Microbiol ; 256: 109045, 2021 May.
Article in English | MEDLINE | ID: mdl-33887564

ABSTRACT

The blaNDM-5-producing E. coli Sequence Type (ST)167 high-risk clone is emerging worldwide in human clinical cases, while its presence in companion animals is sporadic and has never been described in Italy. Using a combined Oxford Nanopore (ONT) long-reads and Illumina short-reads sequencing approach, an E. coli ST167 isolated from a hospitalized dog, was in-depth characterized by WGS and the plasmid containing blaNDM-5 was fully reconstructed. The complete sequence of the pMOL008 mosaic plasmid (F36:F31:A4:B1; pMOL008) harbouring blaNDM-5, was resolved and characterized. Moreover, a (pro)phage and IncFII, containing blaCMY-2 and ermB, and IncI2 plasmid types were also identified. pMOL008 was almost identical to blaNDM-5-containing plasmids from E. coli ST167 isolated from Italian human clinical cases and from a Swiss dog and colonized humans. blaNDM-5 was located in a class 1 integron together with aadA2, aac(3)-IIa, mph(A), sul1, tet(A) and dfrA12. The risk of spill-over and spill-back transmission of carbapenem-resistance genes, related plasmids and strains between humans and dogs, represents a Public Health threat and highlights the importance of the One Health approach for the AMR surveillance.


Subject(s)
Bacterial Proteins/metabolism , Dog Diseases/microbiology , Drug Resistance, Bacterial , Escherichia coli Infections/veterinary , Escherichia coli/enzymology , beta-Lactamases/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Dogs , Escherichia coli/genetics , Escherichia coli Infections/microbiology , Humans , Italy , Plasmids/genetics , Whole Genome Sequencing/veterinary , beta-Lactamases/genetics
3.
Front Vet Sci ; 7: 577196, 2020.
Article in English | MEDLINE | ID: mdl-33173795

ABSTRACT

Wildlife is frequently infected by intestinal protozoa, which may threaten their fitness and health. A diverse community of Eimeria species is known to occur in the digestive tract of mountain-dwelling ungulates, including chamois (genus Rupicapra). However, available data on Eimeria diversity in these taxa is at times inconsistent and mostly dated. In the present study, we aimed to revisit the occurrence of Eimeria spp. in the Alpine subspecies of the Northern chamois (Rupicapra rupicapra rupicapra) and the Apennine subspecies of the Southern chamois (Rupicapra pyrenaica ornata) in Italy, using an integrated approach based on a hierarchical cluster analysis (HCPC) applied to oocyst morphology and morphometry. A total of 352 fecal samples were collected from R. r. rupicapra (n = 262) and R. p. ornata (n = 90). Overall, 85.3% (300/352) of the animals tested microscopically positive to Eimeria spp. Based on morphological analysis, we identified all the eimerian species described in chamois. Through the HCPC method, five clusters were generated, corresponding to E. suppereri, E. yakimoffmatschoulskyi, E. riedmuelleri (two different clusters), and E. rupicaprae morphotypes. The well-defined clusters within E. riedmuelleri support the existence of two distinct morphological groups, possibly referable to different taxonomic units. This study suggests that combining a morphometrical approach with a powerful statistical method may be helpful to disentangle uncertainties in the morphology of Eimeria oocysts and to address taxonomic studies of eimeriid protozoa at a specific host taxon level.

SELECTION OF CITATIONS
SEARCH DETAIL
...