Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Adv Mater ; 35(31): e2300391, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37207689

ABSTRACT

The quantum anomalous Hall (QAH) effect is characterized by a dissipationless chiral edge state with a quantized Hall resistance at zero magnetic field. Manipulating the QAH state is of great importance in both the understanding of topological quantum physics and the implementation of dissipationless electronics. Here, the QAH effect is realized in the magnetic topological insulator Cr-doped (Bi,Sb)2 Te3 (CBST) grown on an uncompensated antiferromagnetic insulator Al-doped Cr2 O3 . Through polarized neutron reflectometry (PNR), a strong exchange coupling is found between CBST and Al-Cr2 O3 surface spins fixing interfacial magnetic moments perpendicular to the film plane. The interfacial coupling results in an exchange-biased QAH effect. This study further demonstrates that the magnitude and sign of the exchange bias can be effectively controlled using a field training process to set the magnetization of the Al-Cr2 O3 layer. It demonstrates the use of the exchange bias effect to effectively manipulate the QAH state, opening new possibilities in QAH-based spintronics.

2.
Rev Sci Instrum ; 93(9): 093903, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182507

ABSTRACT

Understanding the interfacial structure-property relationship of complex fluid-fluid interfaces is increasingly important for guiding the formulation of systems with targeted interfacial properties, such as those found in multiphase complex fluids, biological systems, biopharmaceuticals formulations, and many consumer products. Mixed interfacial flow fields, typical of classical Langmuir trough experiments, introduce a complex interfacial flow history that complicates the study of interfacial properties of complex fluid interfaces. In this article, we describe the design, implementation, and validation of a new instrument capable of independent application of controlled interfacial dilation and shear kinematics on fluid interfaces. Combining the Quadrotrough with both in situ Brewster angle microscopy and neutron reflectometry provides detailed structural measurements of the interface at the mesoscale and nanoscale in relationship to interfacial material properties under controlled interfacial deformation histories.


Subject(s)
Biological Products , Dilatation , Surface Properties
3.
J Vis Exp ; (174)2021 08 06.
Article in English | MEDLINE | ID: mdl-34424249

ABSTRACT

This paper presents the use of a stopped-flow small-angle neutron-scattering (SANS) sample environment to quickly mix liquid samples and study nanoscale kinetic processes on time scales of seconds to minutes. The stopped-flow sample environment uses commercially available syringe pumps to mix the desired volumes of liquid samples that are then injected through a dynamic mixer into a quartz glass cell in approximately 1 s. Time-resolved SANS data acquisition is synced with the sample mixing to follow the evolution of the nanostructure in solution after mixing. To make the most efficient use of neutron beam time, we use a series of flow selector valves to automatically load, rinse, and dry the cell between measurements, allowing for repeated data collection throughout multiple sample injections. Sample injections are repeated until sufficient neutron scattering statistics are collected. The mixing setup can be programmed to systematically vary conditions to measure the kinetics at different mixing ratios, sample concentrations, additive concentrations, and temperatures. The minimum sample volume required per injection is approximately 150 µL depending on the path length of the quartz cell. Representative results using this stopped-flow sample environment are presented for rapid lipid exchange kinetics in the presence of an additive, cyclodextrin. The vesicles exchange outer-leaflet (exterior) lipids on the order of seconds and fully exchange both interior and exterior lipids within hours. Measuring lipid exchange kinetics requires in situ mixing to capture the faster (seconds) and slower (minutes) processes and extract the kinetic rate constants. The same sample environment can also be used to probe molecular exchange in other types of liquid samples such as lipid nanoparticles, proteins, surfactants, polymers, emulsions, or inorganic nanoparticles. Measuring the nanoscale structural transformations and kinetics of exchanging or reacting systems will provide new insights into processes that evolve at the nanoscale.


Subject(s)
Lipids , Nanoparticles , Kinetics , Neutron Diffraction , Neutrons , Scattering, Small Angle
4.
Soft Matter ; 16(33): 7676-7684, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32804181

ABSTRACT

We reveal the assembly of magnetite nanoparticles of sizes 5 nm, 15 nm and 25 nm from dilute water-based ferrofluids onto an amorphous magnetic template with out-of-plane anisotropy. From neutron reflectometry experiments we extract density profiles and show that the particles self-assemble into layers at the magnetic surface. The layers are extremely stable against cleaning and rinsing of the substrate. The density of the layers is determined by and increases with the remanent magnetic moment of the particles.

5.
Nanomaterials (Basel) ; 10(6)2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32599954

ABSTRACT

In this article we review the process by which magnetite nanoparticles self-assemble onto solid surfaces. The focus is on neutron reflectometry studies providing information on the density and magnetization depth profiles of buried interfaces. Specific attention is given to the near-interface "wetting" layer and to examples of magnetite nanoparticles on a hydrophilic silicon crystal, one coated with (3-Aminopropyl)triethoxysilane, and finally, one with a magnetic film with out-of-plane magnetization.

6.
Article in English | MEDLINE | ID: mdl-34194075

ABSTRACT

Neutron reflectometry (NR) is a powerful method for looking at the structures of multilayered thin films, including biomolecules on surfaces, particularly proteins at lipid interfaces. The spatial resolution of the film structure obtained through an NR experiment is limited by the maximum wavevector transfer at which the reflectivity can be measured. This maximum is in turn determined primarily by the scattering background, e.g. from incoherent scattering from a liquid reservoir or inelastic scattering from cell materials. Thus, reduction of scattering background is an important part of improving the spatial resolution attainable in NR measurements. Here, the background field generated by scattering from a thin liquid reservoir on a monochromatic reflectometer is measured and calculated. It is shown that background subtraction utilizing the entire background field improves data modeling and reduces experimental uncertainties associated with localized background subtraction.

7.
Phys Rev Lett ; 123(1): 016101, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31386422

ABSTRACT

We report the detection and quantification of nuclear spin incoherent scattering from hydrogen occupying interstitial sites in a thin film of vanadium. The neutron wave field is enhanced in a quantum resonator with magnetically switchable boundaries. Our results provide a pathway for the study of dynamics at surfaces and in ultrathin films using inelastic and/or quasielastic neutron scattering methods.

8.
Langmuir ; 34(33): 9634-9644, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30036069

ABSTRACT

The search continues for means of making quick determinations of the efficacy of a coating for protecting a metal surface against corrosion. One means of reducing the time scale needed to differentiate the performance of different coatings is to draw from nanoscale measurements inferences about macroscopic behavior. Here we connect observations of the penetration of water into plasma polymerized (PP) protective coatings and the character of the interface between the coating and an oxide-coated aluminum substrate or model oxide-coated silicon substrate to the macroscopically observable corrosion for those systems. A plasma polymerized film from hexamethyldisiloxane (HMDSO) monomer is taken as illustrative of a hydrophobic coating, while a PP film from maleic anhydride (MA) is used as a characteristically hydrophilic coating. The neutron reflectivity (NR) of films on silicon oxide coated substrates shows that water moves more readily through the hydrophilic PP-MA film. Off-specular X-ray scattering indicates the PP-MA film on aluminum is less conformal with the substrate than is the PP-HMDSO film. Measurements with infrared-visible sum frequency generation spectroscopy (SFG), which probes the chemical nature of the interface, make clear that the chemical interactions between coating and aluminum oxide are disrupted by interfacial water. With this water penetration and interface disruption, macroscopic corrosion can occur much more rapidly. An Al panel coated with PP-MA corrodes after 1 day in salt spray, while a similarly thin (∼30 nm) PP-HMDSO coating protects an Al panel for a period on the order of one month.

9.
ACS Appl Mater Interfaces ; 10(5): 5050-5060, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29299907

ABSTRACT

This article describes the three-dimensional self-assembly of monodisperse colloidal magnetite nanoparticles (NPs) from a dilute water-based ferrofluid onto a silicon surface and the dependence of the resultant magnetic structure on the applied field. The NPs assemble into close-packed layers on the surface followed by more loosely packed ones. The magnetic field-dependent magnetization of the individual NP layers depends on both the rotational freedom of the layer and the magnetization of the adjacent layers. For layers in which the NPs are more free to rotate, the easy axis of the NP can readily orient along the field direction. In more dense packing, free rotation of the NPs is hampered, and the NP ensembles likely build up quasi-domain states to minimize energy, which leads to lower magnetization in those layers. Detailed analysis of polarized neutron reflectometry data together with model calculations of the arrangement of the NPs within the layers and input from small-angle scattering measurements provide full characterization of the core/shell NP dimensions, degree of chaining, arrangement of the NPs within the different layers, and magnetization depth profile.

10.
J Appl Phys ; 1242018.
Article in English | MEDLINE | ID: mdl-38915878

ABSTRACT

Pulsed laser deposition films from Ba2FeMoO6 (BFMO) targets onto SrTiO3[001] (STO) substrates have been reported previously to have non-zero magnetism at 300 K, a majority of magnetic ordering at 240 K that is less than the 370 K ordering temperature of polycrystalline BFMO, and suppressed saturation magnetization compared to polycrystalline BFMO. To interrogate these previously reported observations of BFMO on STO, we have used a combination of x-ray diffraction, atomic force microscopy, x-ray and neutron reflectivity, and x-ray photoelectron spectroscopy that shows inhomogeneities. The present results show off-stoichiometry on the A-site by incorporation of Sr from the substrate and on the B-site to have %Fe/%Mo > 1 by evolution of BaMoO4. There is an enhanced ordering temperature and magnetic response nearer to the SrTiO3 interface compared to the air interface. Depth dependent strain and microstructure are needed to explain the magnetic response. Holistic considerations and implications are also discussed.

12.
J Appl Crystallogr ; 49(Pt 4): 1121-1129, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27504074

ABSTRACT

The presence of a large applied magnetic field removes the degeneracy of the vacuum energy states for spin-up and spin-down neutrons. For polarized neutron reflectometry, this must be included in the reference potential energy of the Schrödinger equation that is used to calculate the expected scattering from a magnetic layered structure. For samples with magnetization that is purely parallel or antiparallel to the applied field which defines the quantization axis, there is no mixing of the spin states (no spin-flip scattering) and so this additional potential is constant throughout the scattering region. When there is non-collinear magnetization in the sample, however, there will be significant scattering from one spin state into the other, and the reference potentials will differ between the incoming and outgoing wavefunctions, changing the angle and intensities of the scattering. The theory of the scattering and recommended experimental practices for this type of measurement are presented, as well as an example measurement.

13.
Nat Commun ; 7: 12264, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27447691

ABSTRACT

Electric field control of magnetism provides a promising route towards ultralow power information storage and sensor technologies. The effects of magneto-ionic motion have been prominently featured in the modification of interface characteristics. Here, we demonstrate magnetoelectric coupling moderated by voltage-driven oxygen migration beyond the interface in relatively thick AlOx/GdOx/Co(15 nm) films. Oxygen migration and Co magnetization are quantitatively mapped with polarized neutron reflectometry under electro-thermal conditioning. The depth-resolved profiles uniquely identify interfacial and bulk behaviours and a semi-reversible control of the magnetization. Magnetometry measurements suggest changes in the microstructure which disrupt long-range ferromagnetic ordering, resulting in an additional magnetically soft phase. X-ray spectroscopy confirms changes in the Co oxidation state, but not in the Gd, suggesting that the GdOx transmits oxygen but does not source or sink it. These results together provide crucial insight into controlling magnetism via magneto-ionic motion, both at interfaces and throughout the bulk of the films.

14.
Nat Commun ; 7: 11050, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-26996674

ABSTRACT

Ionic transport in metal/oxide heterostructures offers a highly effective means to tailor material properties via modification of the interfacial characteristics. However, direct observation of ionic motion under buried interfaces and demonstration of its correlation with physical properties has been challenging. Using the strong oxygen affinity of gadolinium, we design a model system of GdxFe1-x/NiCoO bilayer films, where the oxygen migration is observed and manifested in a controlled positive exchange bias over a relatively small cooling field range. The exchange bias characteristics are shown to be the result of an interfacial layer of elemental nickel and cobalt, a few nanometres in thickness, whose moments are larger than expected from uncompensated NiCoO moments. This interface layer is attributed to a redox-driven oxygen migration from NiCoO to the gadolinium, during growth or soon after. These results demonstrate an effective path to tailoring the interfacial characteristics and interlayer exchange coupling in metal/oxide heterostructures.

15.
Nat Commun ; 6: 8462, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26446515

ABSTRACT

The topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. Here, we demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from the dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. The imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices.

16.
Biochim Biophys Acta ; 1838(12): 3078-87, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25148702

ABSTRACT

We report the effect on lipid bilayers of the Tat peptide Y47GRKKRRQRRR57 from the HIV-1 virus transactivator of translation (Tat) protein. Synergistic use of low-angle X-ray scattering (LAXS) and atomistic molecular dynamic simulations (MD) indicate Tat peptide binding to neutral dioleoylphosphocholine (DOPC) lipid headgroups. This binding induced the local lipid phosphate groups to move 3Å closer to the center of the bilayer. Many of the positively charged guanidinium components of the arginines were as close to the center of the bilayer as the locally thinned lipid phosphate groups. LAXS data for DOPC, DOPC/dioleoylphosphoethanolamine (DOPE), DOPC/dioleoylphosphoserine (DOPS), and a mimic of the nuclear membrane gave similar results. Generally, the Tat peptide decreased the bilayer bending modulus KC and increased the area/lipid. Further indications that Tat softens a membrane, thereby facilitating translocation, were provided by wide-angle X-ray scattering (WAXS) and neutron scattering. CD spectroscopy was also applied to further characterize Tat/membrane interactions. Although a mechanism for translation remains obscure, this study suggests that the peptide/lipid interaction makes the Tat peptide poised to translocate from the headgroup region.

17.
Langmuir ; 28(10): 4723-8, 2012 Mar 13.
Article in English | MEDLINE | ID: mdl-22352350

ABSTRACT

X-ray and neutron diffraction studies of a binary lipid membrane demonstrate that halothane at physiological concentrations produces a pronounced redistribution of lipids between domains of different lipid types identified by different lamellar d-spacings and isotope composition. In contrast, dichlorohexafluorocyclobutane (F6), a halogenated nonanesthetic, does not produce such significant effects. These findings demonstrate a specific effect of inhalational anesthetics on mixing phase equilibria of a lipid mixture.


Subject(s)
Halothane/pharmacology , Membrane Lipids/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Anesthetics, Inhalation/pharmacology , Models, Molecular , Neutron Diffraction , Phase Transition/drug effects , Phosphatidylcholines/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...