Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 16(25): 5886-5891, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32458854

ABSTRACT

When a particle is placed in a material with a lower bulk melting temperature, intermolecular forces can lead to the existence of a "premelted" liquid film of the lower melting temperature material. Despite the system being below the melting temperatures of both solids, the liquid film is a consequence of thermodynamic equilibrium, controlled by intermolecular, ionic and other interactions. An imposed temperature gradient drives the translation of the particle by a process of melting and refreezing known as "thermal regelation". We calculate the rate of regelation of spherical particles surrounded by premelted films that contain ionic impurities. The impurities enhance the rate of motion thereby influencing the dynamics of single particles and distributions of particles, which we describe in addition to the consequences in natural and technological settings.

2.
J Chem Phys ; 151(2): 024107, 2019 Jul 14.
Article in English | MEDLINE | ID: mdl-31301717

ABSTRACT

It is intuitive that the diffusivity of an isolated particle differs from those in a monodisperse suspension, in which hydrodynamic interactions between the particles are operative. Batchelor [J. Fluid Mech. 74, 1-29 (1976) and J. Fluid Mech. 131, 155-175 (1983)] calculated how hydrodynamic interactions influenced the diffusivity of a dilute suspension of spherical particles, and Russel et al. [Colloidal Dispersions (Cambridge University Press, 1991)] and Brady [J. Fluid Mech. 272, 109-134 (1994)] treated nondilute (higher particle volume fraction) suspensions. Although most particles lack perfect sphericity, little is known about the effects of hydrodynamic interactions on the diffusivity of spheroidal particles, which are the simplest shapes that can be used to model anisotropic particles. Here, we calculate the effects of hydrodynamic interactions on the translational and rotational diffusivities of spheroidal particles of arbitrary aspect ratio in dilute monodisperse suspensions. We find that the translational and rotational diffusivities of prolate spheroids are more sensitive to eccentricity than for oblate spheroids. The origin of the hydrodynamic anisotropy is that found in the stresslet field for the induced-dipole interaction. However, in the dilute limit, the effects of anisotropy are at the level of a few percent. These effects have influence on a vast range of settings, from partially frozen colloidal suspensions to the dynamics of cytoplasm.


Subject(s)
Diffusion , Hydrodynamics , Colloids/chemistry , Particle Size , Surface Properties , Suspensions/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...