Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 13(2)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36836771

ABSTRACT

Vertebrate ATP1B4 genes represent a rare instance of orthologous gene co-option, resulting in radically different functions of the encoded BetaM proteins. In lower vertebrates, BetaM is a Na, K-ATPase ß-subunit that is a component of ion pumps in the plasma membrane. In placental mammals, BetaM lost its ancestral role and, through structural alterations of the N-terminal domain, became a skeletal and cardiac muscle-specific protein of the inner nuclear membrane, highly expressed during late fetal and early postnatal development. We previously determined that BetaM directly interacts with the transcriptional co-regulator SKI-interacting protein (SKIP) and is implicated in the regulation of gene expression. This prompted us to investigate a potential role for BetaM in the regulation of muscle-specific gene expression in neonatal skeletal muscle and cultured C2C12 myoblasts. We found that BetaM can stimulate expression of the muscle regulatory factor (MRF), MyoD, independently of SKIP. BetaM binds to the distal regulatory region (DRR) of MyoD, promotes epigenetic changes associated with activation of transcription, and recruits the SWI/SNF chromatin remodeling subunit, BRG1. These results indicate that eutherian BetaM regulates muscle gene expression by promoting changes in chromatin structure. These evolutionarily acquired new functions of BetaM might be very essential and provide evolutionary advantages to placental mammals.

2.
J Cell Physiol ; 234(7): 11780-11791, 2019 07.
Article in English | MEDLINE | ID: mdl-30515787

ABSTRACT

SWI/SNF chromatin remodeling enzymes are multisubunit complexes that contain one of two catalytic subunits, BRG1 or BRM and 9-11 additional subunits called BRG1 or BRM-associated factors (BAFs). BRG1 interacts with the microphthalmia-associated transcription factor (MITF) and is required for melanocyte development in vitro and in vivo. The subunits of SWI/SNF that mediate interactions between BRG1 and MITF have not been elucidated. Three mutually exclusive isoforms of a 60-kDa subunit (BAF60A, B, or C) often facilitate interactions with transcription factors during lineage specification. We tested the hypothesis that a BAF60 subunit promotes interactions between MITF and the BRG1-containing SWI/SNF complex. We found that MITF can physically interact with BAF60A, BAF60B, and BAF60C. The interaction between MITF and BAF60A required the basic helix-loop-helix domain of MITF. Recombinant BAF60A pulled down recombinant MITF, suggesting that the interaction can occur in the absence of other SWI/SNF subunits and other transcriptional regulators of the melanocyte lineage. Depletion of BAF60A in differentiating melanoblasts inhibited melanin synthesis and expression of MITF target genes. MITF promoted BAF60A recruitment to melanocyte-specific promoters, and BAF60A was required to promote BRG1 recruitment and chromatin remodeling. Thus, BAF60A promotes interactions between MITF and the SWI/SNF complex and is required for melanocyte differentiation.


Subject(s)
Cell Differentiation , Chromosomal Proteins, Non-Histone/metabolism , DNA Helicases/metabolism , Melanocytes/cytology , Melanocytes/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Animals , Cell Cycle , Cell Differentiation/genetics , Gene Expression Regulation , HEK293 Cells , Humans , Melanins/biosynthesis , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Microphthalmia-Associated Transcription Factor/chemistry , Models, Biological , Oxidoreductases/genetics , Oxidoreductases/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , Protein Subunits/metabolism
3.
Nucleic Acids Res ; 45(11): 6442-6458, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28431046

ABSTRACT

Mutations in SOX10 cause neurocristopathies which display varying degrees of hypopigmentation. Using a sensitized mutagenesis screen, we identified Smarca4 as a modifier gene that exacerbates the phenotypic severity of Sox10 haplo-insufficient mice. Conditional deletion of Smarca4 in SOX10 expressing cells resulted in reduced numbers of cranial and ventral trunk melanoblasts. To define the requirement for the Smarca4 -encoded BRG1 subunit of the SWI/SNF chromatin remodeling complex, we employed in vitro models of melanocyte differentiation in which induction of melanocyte-specific gene expression is closely linked to chromatin alterations. We found that BRG1 was required for expression of Dct, Tyrp1 and Tyr, genes that are regulated by SOX10 and MITF and for chromatin remodeling at distal and proximal regulatory sites. SOX10 was found to physically interact with BRG1 in differentiating melanocytes and binding of SOX10 to the Tyrp1 distal enhancer temporally coincided with recruitment of BRG1. Our data show that SOX10 cooperates with MITF to facilitate BRG1 binding to distal enhancers of melanocyte-specific genes. Thus, BRG1 is a SOX10 co-activator, required to establish the melanocyte lineage and promote expression of genes important for melanocyte function.


Subject(s)
Cell Differentiation , DNA Helicases/metabolism , Melanocytes/physiology , Nuclear Proteins/metabolism , SOXE Transcription Factors/metabolism , Transcription Factors/metabolism , Animals , Cell Line , Enhancer Elements, Genetic , Gene Expression , Gene Expression Regulation , Melanins/biosynthesis , Membrane Glycoproteins/genetics , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Oxidoreductases/genetics
4.
PLoS One ; 8(7): e69037, 2013.
Article in English | MEDLINE | ID: mdl-23874858

ABSTRACT

SOX10 is a Sry-related high mobility (HMG)-box transcriptional regulator that promotes differentiation of neural crest precursors into Schwann cells, oligodendrocytes, and melanocytes. Myelin, formed by Schwann cells in the peripheral nervous system, is essential for propagation of nerve impulses. SWI/SNF complexes are ATP dependent chromatin remodeling enzymes that are critical for cellular differentiation. It was recently demonstrated that the BRG1 subunit of SWI/SNF complexes activates SOX10 expression and also interacts with SOX10 to activate expression of OCT6 and KROX20, two transcriptional regulators of Schwann cell differentiation. To determine the requirement for SWI/SNF enzymes in the regulation of genes that encode components of myelin, which are downstream of these transcriptional regulators, we introduced SOX10 into fibroblasts that inducibly express dominant negative versions of the SWI/SNF ATPases, BRM or BRG1. Dominant negative BRM and BRG1 have mutations in the ATP binding site and inhibit gene activation events that require SWI/SNF function. Ectopic expression of SOX10 in cells derived from NIH 3T3 fibroblasts led to the activation of the endogenous Schwann cell specific gene, myelin protein zero (MPZ) and the gene that encodes myelin basic protein (MBP). Thus, SOX10 reprogrammed these cells into myelin gene expressing cells. Ectopic expression of KROX20 was not sufficient for activation of these myelin genes. However, KROX20 together with SOX10 synergistically activated MPZ and MBP expression. Dominant negative BRM and BRG1 abrogated SOX10 mediated activation of MPZ and MBP and synergistic activation of these genes by SOX10 and KROX20. SOX10 was required to recruit BRG1 to the MPZ locus. Similarly, in immortalized Schwann cells, BRG1 recruitment to SOX10 binding sites at the MPZ locus was dependent on SOX10 and expression of dominant negative BRG1 inhibited expression of MPZ and MBP in these cells. Thus, SWI/SNF enzymes cooperate with SOX10 to directly activate genes that encode components of peripheral myelin.


Subject(s)
Myelin Sheath/metabolism , SOXE Transcription Factors/metabolism , Animals , Cell Line , Chromatin Immunoprecipitation , Chromosomal Proteins, Non-Histone , DNA Helicases/genetics , DNA Helicases/metabolism , Early Growth Response Protein 2/genetics , Early Growth Response Protein 2/metabolism , Flow Cytometry , Immunoblotting , Mice , Myelin Sheath/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Real-Time Polymerase Chain Reaction , SOXE Transcription Factors/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Pigment Cell Melanoma Res ; 26(3): 377-91, 2013 May.
Article in English | MEDLINE | ID: mdl-23480510

ABSTRACT

Microphthalmia-associated transcription factor (MITF) is a survival factor in melanocytes and melanoma cells. MITF regulates expression of antiapoptotic genes and promotes lineage-specific survival in response to ultraviolet (UV) radiation and to chemotherapeutics. SWI/SNF chromatin-remodeling enzymes interact with MITF to regulate MITF target gene expression. We determined that the catalytic subunit, BRG1, of the SWI/SNF complex protects melanoma cells against UV-induced death. BRG1 prevents apoptosis in UV-irradiated melanoma cells by activating expression of the melanoma inhibitor of apoptosis (ML-IAP). Down-regulation of ML-IAP compromises BRG1-mediated survival of melanoma cells in response to UV radiation. BRG1 regulates ML-IAP expression by cooperating with MITF to promote transcriptionally permissive chromatin structure on the ML-IAP promoter. The alternative catalytic subunit, BRM, and the BRG1-associated factor, BAF180, were found to be dispensable for elevated expression of ML-IAP in melanoma cells. Thus, we illuminate a lineage-specific mechanism by which a specific SWI/SNF subunit, BRG1, modulates the cellular response to DNA damage by regulating an antiapoptotic gene and implicate this subunit of the SWI/SNF complex in mediating the prosurvival function of MITF.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , DNA Helicases/metabolism , Gene Expression Regulation, Neoplastic/radiation effects , Inhibitor of Apoptosis Proteins/genetics , Melanoma/genetics , Melanoma/pathology , Microphthalmia-Associated Transcription Factor/metabolism , Neoplasm Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Ultraviolet Rays , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis/genetics , Apoptosis/radiation effects , Cell Line, Tumor , Cell Survival/radiation effects , Chromatin/metabolism , Cytoprotection/radiation effects , DNA-Binding Proteins , Histones/metabolism , Humans , Inhibitor of Apoptosis Proteins/metabolism , Mice , Models, Biological , Neoplasm Proteins/metabolism , Promoter Regions, Genetic/genetics , Transcription, Genetic/radiation effects
6.
Mol Cancer ; 9: 280, 2010 Oct 22.
Article in English | MEDLINE | ID: mdl-20969766

ABSTRACT

BACKGROUND: Metastatic melanoma is an aggressive malignancy that is resistant to therapy and has a poor prognosis. The progression of primary melanoma to metastatic disease is a multi-step process that requires dynamic regulation of gene expression through currently uncharacterized epigenetic mechanisms. Epigenetic regulation of gene expression often involves changes in chromatin structure that are catalyzed by chromatin remodeling enzymes. Understanding the mechanisms involved in the regulation of gene expression during metastasis is important for developing an effective strategy to treat metastatic melanoma. SWI/SNF enzymes are multisubunit complexes that contain either BRG1 or BRM as the catalytic subunit. We previously demonstrated that heterogeneous SWI/SNF complexes containing either BRG1 or BRM are epigenetic modulators that regulate important aspects of the melanoma phenotype and are required for melanoma tumorigenicity in vitro. RESULTS: To characterize BRG1 expression during melanoma progression, we assayed expression of BRG1 in patient derived normal skin and in melanoma specimen. BRG1 mRNA levels were significantly higher in stage IV melanomas compared to stage III tumors and to normal skin. To determine the role of BRG1 in regulating the expression of genes involved in melanoma metastasis, we expressed BRG1 in a melanoma cell line that lacks BRG1 expression and examined changes in extracellular matrix and adhesion molecule expression. We found that BRG1 modulated the expression of a subset of extracellular matrix remodeling enzymes and adhesion proteins. Furthermore, BRG1 altered melanoma adhesion to different extracellular matrix components. Expression of BRG1 in melanoma cells that lack BRG1 increased invasive ability while down-regulation of BRG1 inhibited invasive ability in vitro. Activation of metalloproteinase (MMP) 2 expression greatly contributed to the BRG1 induced increase in melanoma invasiveness. We found that BRG1 is recruited to the MMP2 promoter and directly activates expression of this metastasis associated gene. CONCLUSIONS: We provide evidence that BRG1 expression increases during melanoma progression. Our study has identified BRG1 target genes that play an important role in melanoma metastasis and we show that BRG1 promotes melanoma invasive ability in vitro. These results suggest that increased BRG1 levels promote the epigenetic changes in gene expression required for melanoma metastasis to proceed.


Subject(s)
DNA Helicases/metabolism , Melanoma/metabolism , Melanoma/pathology , Nuclear Proteins/metabolism , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Transcription Factors/metabolism , Antigens, CD , CD56 Antigen/genetics , CD56 Antigen/metabolism , Cadherins/genetics , Cadherins/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Chromatin Immunoprecipitation , DNA Helicases/genetics , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Flow Cytometry , Humans , Immunoblotting , Immunohistochemistry , Immunoprecipitation , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Melanoma/genetics , Nuclear Proteins/genetics , Polymerase Chain Reaction , Skin Neoplasms/genetics , Transcription Factors/genetics , Kalinin
SELECTION OF CITATIONS
SEARCH DETAIL
...