Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Am J Bot ; 110(12): e16257, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38014995

ABSTRACT

PREMISE: The ornamental Asian palm Trachycarpus fortunei (Arecaceae: Coryphoideae) is widely planted in temperate regions. In Europe, it has spread outside of gardens, particularly on the southern side of the Alps. Sexual expression in the species is complex, varying from dioecy to polygamy. This study investigated (1) sexual floral development and (2) genetic markers implicated in sex determinism. METHODS: The morphology and anatomy of floral organs at different developmental stages were studied using SEM observations and anatomical section. Sex determinism was explored using a genome-wide association study approach, searching for correlations between 31,000 single-nucleotide polymorphisms and sex affiliation of 122 palms from 21 wild populations. RESULTS: We observed that sexual differentiation appears late in floral development of T. fortunei. Morpho-anatomical characters of flowers conducive to panmixia were observed, such as well-differentiated septal nectaries that are thought to promote cross-pollination. At the molecular level, homozygous and heterozygous allelic systems with closely linked regions were found for sex determinism in individuals with female and "dominant-male" phenotypes, respectively. Through our wide sampling in the southern Alps, the closely linked genetic regions in males suggest that at least fifteen percent of wild palms are the direct offspring of "males" that can also produce fertile pistillate flowers. CONCLUSIONS: Trachycarpus fortunei is a further example of unstable sexual expression found in the family Arecaceae and represents an evolutionary path towards an XY genetic system. Our structural and genetic results may explain the high species dispersal ability in the southern Alps.


Subject(s)
Arecaceae , Cannabis , Humans , Male , Female , Cannabis/genetics , Genome-Wide Association Study , Arecaceae/genetics , Arecaceae/anatomy & histology , Plants/genetics , Flowers/anatomy & histology
2.
Plants (Basel) ; 8(3)2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30909493

ABSTRACT

Helosis cayennensis (Balanophoraceae s.str.) is a holoparasite characterised by aberrant vegetative bodies and tiny, reduced unisexual flowers. Here, we analysed the development of female flowers to elucidate their morpho-anatomy and the historical controversy on embryo sac formation. We also studied the developmental origin of inflorescences and the ontogeny of fruits, embryo and endosperm and discussed in a phylogenetic framework. Inflorescences were analysed by optical, fluorescence and scanning electron microscopy. Inflorescences of H. cayennensis arise endogenously. Female flowers lack perianth organs, thus only consist of the ovary, two styles and stigmata. Ovules are undifferentiated; two megaspore mother cells develop inside a nucellar complex. The female gametophyte, named Helosis-type, is a bisporic four-celled embryo sac, provided with a typical egg apparatus and a uni-nucleated central cell. Fertilization was not observed, yet a few-celled embryo and cellular endosperm developed. In sum, results confirm that, among Santalales holoparasites, Helosis is intermediate in the reduction series of its floral organs. Although perianth absence best supports the Balanophoraceae s.str. clade, our literature survey on female flower developmental data across Balanophoraceae s.l. highlights the many gaps that need to be filled to really understand these features in the light of new phylogenetic relationships.

3.
Ann Bot ; 120(5): 765-774, 2017 11 10.
Article in English | MEDLINE | ID: mdl-28673028

ABSTRACT

Background and Aims: The most widespread form of protective mutualisms is represented by plants bearing extrafloral nectaries (EFNs) that attract ants and other arthropods for indirect defence. Another, but less common, form of sugary secretion for indirect defence occurs in galls induced by cynipid wasps. Until now, such galls have been reported only for cynipid wasps that infest oak trees in the northern hemisphere. This study provides the first evidence of galls that exude sugary secretions in the southern hemisphere and asks whether they can be considered as analogues of plants' EFNs. Methods: The ecology and anatomy of galls and the chemical composition of the secretion were investigated in north-western Argentina, in natural populations of the host trees Prosopis chilensis and P. flexuosa . To examine whether ants protect the galls from natural enemies, ant exclusion experiments were conducted in the field. Key Results: The galls produce large amounts of sucrose-rich, nectar-like secretions. No typical nectary and sub-nectary parenchymatic tissues or secretory trichomes can be observed; instead there is a dense vascularization with phloem elements reaching the gall periphery. At least six species of ants, but also vespid wasps, Diptera and Coleoptera, consumed the gall secretions. The ant exclusion experiment showed that when ants tended galls, no differences were found in the rate of successful emergence of gall wasps or in the rate of parasitism and inquiline infestation compared with ant-excluded galls. Conclusions: The gall sugary secretion is not analogous to extrafloral nectar because no nectar-producing structure is associated with it, but is functionally equivalent to arthropod honeydew because it provides indirect defence to the plant parasite. As in other facultative mutualisms mediated by sugary secretions, the gall secretion triggers a complex multispecies interaction, in which the outcome of individual pair-wise interactions depends on the ecological context in which they take place.


Subject(s)
Ants/physiology , Oviposition , Plant Nectar/metabolism , Prosopis/physiology , Symbiosis , Wasps/physiology , Animals , Argentina , Plant Nectar/analysis , Prosopis/chemistry , Sugars/metabolism , Trees/chemistry , Trees/physiology
4.
AoB Plants ; 62014 Nov 07.
Article in English | MEDLINE | ID: mdl-25381258

ABSTRACT

Interactions mediated by extrafloral nectary (EFN)-bearing plants that reward ants with a sweet liquid secretion are well documented in temperate and tropical habitats. However, their distribution and abundance in deserts are poorly known. In this study, we test the predictions that biotic interactions between EFN plants and ants are abundant and common also in arid communities and that EFNs are only functional when new vegetative and reproductive structures are developing. In a seasonal desert of northwestern Argentina, we surveyed the richness and phenology of EFN plants and their associated ants and examined the patterns in ant-plant interaction networks. We found that 25 ant species and 11 EFN-bearing plant species were linked together through 96 pairs of associations. Plants bearing EFNs were abundant, representing ca. 19 % of the species encountered in transects and 24 % of the plant cover. Most ant species sampled (ca. 77 %) fed on EF nectar. Interactions showed a marked seasonal pattern: EFN secretion was directly related to plant phenology and correlated with the time of highest ant ground activity. Our results reveal that EFN-mediated interactions are ecologically relevant components of deserts, and that EFN-bearing plants are crucial for the survival of desert ant communities.

5.
Ann Bot ; 111(6): 1243-50, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23704115

ABSTRACT

BACKGROUND: Plants in over one hundred families in habitats worldwide bear extrafloral nectaries (EFNs). EFNs display a remarkable diversity of evolutionary origins, as well as diverse morphology and location on the plant. They secrete extrafloral nectar, a carbohydrate-rich food that attracts ants and other arthropods, many of which protect the plant in return. By fostering ecologically important protective mutualisms, EFNs play a significant role in structuring both plant and animal communities. And yet researchers are only now beginning to appreciate their importance and the range of ecological, evolutionary and morphological diversity that EFNs exhibit. SCOPE: This Highlight features a series of papers that illustrate some of the newest directions in the study of EFNs. Here, we introduce this set of papers by providing an overview of current understanding and new insights on EFN diversity, ecology and evolution. We highlight major gaps in our current knowledge, and outline future research directions. CONCLUSIONS: Our understanding of the roles EFNs play in plant biology is being revolutionized with the use of new tools from developmental biology and genomics, new modes of analysis allowing hypothesis-testing in large-scale phylogenetic frameworks, and new levels of inquiry extending to community-scale interaction networks. But many central questions remain unanswered; indeed, many have not yet been asked. Thus, the EFN puzzle remains an intriguing challenge for the future.


Subject(s)
Biological Evolution , Plants/anatomy & histology , Animals , Ants , Plant Nectar/metabolism , Symbiosis
6.
Ann Bot ; 111(6): 1263-75, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23104672

ABSTRACT

BACKGROUND AND AIMS: Plants display a wide range of traits that allow them to use animals for vital tasks. To attract and reward aggressive ants that protect developing leaves and flowers from consumers, many plants bear extrafloral nectaries (EFNs). EFNs are exceptionally diverse in morphology and locations on a plant. In this study the evolution of EFN diversity is explored by focusing on the legume genus Senna, in which EFNs underwent remarkable morphological diversification and occur in over 80 % of the approx. 350 species. METHODS: EFN diversity in location, morphology and plant ontogeny was characterized in wild and cultivated plants, using scanning electron microscopy and microtome sectioning. From these data EFN evolution was reconstructed in a phylogenetic framework comprising 83 Senna species. KEY RESULTS: Two distinct kinds of EFNs exist in two unrelated clades within Senna. 'Individualized' EFNs (iEFNs), located on the compound leaves and sometimes at the base of pedicels, display a conspicuous, gland-like nectary structure, are highly diverse in shape and characterize the species-rich EFN clade. Previously overlooked 'non-individualized' EFNs (non-iEFNs) embedded within stipules, bracts, and sepals are cryptic and may represent a new synapomorphy for clade II. Leaves bear EFNs consistently throughout plant ontogeny. In one species, however, early seedlings develop iEFNs between the first pair of leaflets, but later leaves produce them at the leaf base. This ontogenetic shift reflects our inferred diversification history of iEFN location: ancestral leaves bore EFNs between the first pair of leaflets, while leaves derived from them bore EFNs either between multiple pairs of leaflets or at the leaf base. CONCLUSIONS: EFNs are more diverse than previously thought. EFN-bearing plant parts provide different opportunities for EFN presentation (i.e. location) and individualization (i.e. morphology), with implications for EFN morphological evolution, EFN-ant protective mutualisms and the evolutionary role of EFNs in plant diversification.


Subject(s)
Ants/physiology , Biological Evolution , Senna Plant/anatomy & histology , Animals , Phenotype , Plant Nectar/metabolism , Senna Plant/genetics , Senna Plant/growth & development , Symbiosis
7.
Evolution ; 66(12): 3918-30, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23206146

ABSTRACT

Conspicuous innovations in the history of life are often preceded by more cryptic genetic and developmental precursors. In many cases, these appear to be associated with recurring origins of very similar traits in close relatives (parallelisms) or striking convergences separated by deep time (deep homologies). Although the phylogenetic distribution of gain and loss of traits hints strongly at the existence of such precursors, no models of trait evolution currently permit inference about their location on a tree. Here we develop a new stochastic model, which explicitly captures the dependency implied by a precursor and permits estimation of precursor locations. We apply it to the evolution of extrafloral nectaries (EFNs), an ecologically significant trait mediating a widespread mutualism between plants and ants. In legumes, a species-rich clade with morphologically diverse EFNs, the precursor model fits the data on EFN occurrences significantly better than conventional models. The model generates explicit hypotheses about the phylogenetic location of hypothetical precursors, which may help guide future studies of molecular genetic pathways underlying nectary position, development, and function.


Subject(s)
Fabaceae/genetics , Models, Genetic , Phylogeny , Fabaceae/anatomy & histology , Plant Nectar
8.
Evolution ; 64(12): 3570-92, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21133898

ABSTRACT

Unraveling the diversification history of old, species-rich and widespread clades is difficult because of extinction, undersampling, and taxonomic uncertainty. In the context of these challenges, we investigated the timing and mode of lineage diversification in Senna (Leguminosae) to gain insights into the evolutionary role of extrafloral nectaries (EFNs). EFNs secrete nectar, attracting ants and forming ecologically important ant-plant mutualisms. In Senna, EFNs characterize one large clade (EFN clade), including 80% of its 350 species. Taxonomic accounts make Senna the largest caesalpinioid genus, but quantitative comparisons to other taxa require inferences about rates. Molecular dating analyses suggest that Senna originated in the early Eocene, and its major lineages appeared during early/mid Eocene to early Oligocene. EFNs evolved in the late Eocene, after the main radiation of ants. The EFN clade diversified faster, becoming significantly more species-rich than non-EFN clades. The shift in diversification rates associated with EFN evolution supports the hypothesis that EFNs represent a (relatively old) key innovation in Senna. EFNs may have promoted the colonization of new habitats appearing with the early uplift of the Andes. This would explain the distinctive geographic concentration of the EFN clade in South America.


Subject(s)
Genome, Plant , Plant Components, Aerial/anatomy & histology , Senna Plant/genetics , Animals , Ants/physiology , Biological Evolution , Ecosystem , Evolution, Molecular , Phylogeny , Plant Components, Aerial/classification , Plant Nectar/physiology , Senna Plant/anatomy & histology , Senna Plant/classification , Senna Plant/physiology , Sequence Alignment , Symbiosis
9.
Am J Bot ; 95(1): 22-40, 2008 Jan.
Article in English | MEDLINE | ID: mdl-21632312

ABSTRACT

The buzz-pollinated genus Senna (Leguminosae) is outstanding for including species with monosymmetric flowers and species with diverse asymmetric, enantiomorphic (enantiostylous) flowers. To recognize patterns of homology, we dissected the floral symmetry character complex and explored corolla morphology in 60 Senna species and studied floral development of four enantiomorphic species. The asymmetry morph of a flower is correlated with the direction of spiral calyx aestivation. We recognized five patterns of floral asymmetry, resulting from different combinations of six structural elements: deflection of the carpel, deflection of the median abaxial stamen, deflection or modification in size of one lateral abaxial stamen, and modification in shape and size of one or both lower petals. Prominent corolla asymmetry begins in the earl-stage bud (unequal development of lower petals). Androecium asymmetry begins either in the midstage bud (unequal development of thecae in median abaxial stamen; twisting of androecium) or at anthesis (stamen deflection). Gynoecium asymmetry begins in early bud (primordium off the median plane, ventral slit laterally oriented) or midstage to late bud (carpel deflection). In enantiostylous flowers, pronouncedly concave and robust petals of both monosymmetric and asymmetric corollas likely function to ricochet and direct pollen flow during buzz pollination. Occurrence of particular combinations of structural elements of floral symmetry in the subclades is shown.

10.
Am J Bot ; 93(2): 288-303, 2006 Feb.
Article in English | MEDLINE | ID: mdl-21646190

ABSTRACT

Senna (Leguminosae) is a large, widespread genus that includes species with enantiostylous, asymmetric flowers and species with extrafloral nectaries. Clarification of phylogenetic relationships within Senna based on parsimony analyses of three chloroplast regions (rpS16, rpL16, and matK) provides new insights on the evolution of floral symmetry and extrafloral nectaries. Our results support the monophyly of only one (Psilorhegma) of the six currently recognized sections, while Chamaefistula, Peiranisia, and Senna are paraphyletic, and monotypic Astroites and Paradictyon are nested within two of the seven major clades identified by our molecular phylogeny. Two clades (I, VII) include only species with monosymmetric flowers, while the remaining clades (II-VI) contain species with asymmetric, enantiostylous flowers, in which either the gynoecium alone or, in addition, corolla and androecium variously contribute to the asymmetry. Our results further suggest that flowers were ancestrally monosymmetric with seven fertile stamens and three adaxial staminodes, switched to asymmetry later, and reverted to monosymmetry in clade VII. Fertility of all 10 stamens is a derived state, characterizing the Psilorhegma subclade. Extrafloral nectaries evolved once and constitute a synapomorphy for clades IV-VII ("EFN clade"). These nectaries may represent a key innovation in plant defense strategies that enabled Senna to undergo large-scale diversification.

SELECTION OF CITATIONS
SEARCH DETAIL
...