Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Air Soil Pollut ; 225(11)2014 Nov.
Article in English | MEDLINE | ID: mdl-26300570

ABSTRACT

The purpose of this study is to examine the development and effectiveness of a persistent dissolved-phase treatment zone, created by injecting potassium permanganate solution, for mitigating discharge of contaminant from a source zone located in a relatively deep, low-permeability formation. A localized 1,1-dichloroethene (DCE) source zone comprising dissolved- and sorbed-phase mass is present in lower permeability strata adjacent to a sand/gravel unit in a section of the Tucson International Airport Area (TIAA) Superfund Site. The results of bench-scale studies conducted using core material collected from boreholes drilled at the site indicated that natural oxidant demand was low, which would promote permanganate persistence. The reactive zone was created by injecting a permanganate solution into multiple wells screened across the interface between the lower-permeability and higher-permeability units. The site has been monitored for nine years to characterize the spatial distribution of DCE and permanganate. Permanganate continues to persist at the site, and a substantial and sustained decrease in DCE concentrations in groundwater has occurred after the permanganate injection.. These results demonstrate successful creation of a long-term, dissolved-phase reactive-treatment zone that reduced mass discharge from the source. This project illustrates the application of in-situ chemical oxidation as a persistent dissolved-phase reactive-treatment system for lower-permeability source zones, which appears to effectively mitigate persistent mass discharge into groundwater.

2.
J Contam Hydrol ; 100(1-2): 1-10, 2008 Aug 20.
Article in English | MEDLINE | ID: mdl-18555558

ABSTRACT

The use of a lumped-process mathematical model to simulate the complete dissolution of immiscible liquid non-uniformly distributed in physically heterogeneous porous-media systems was investigated. The study focused specifically on systems wherein immiscible liquid was poorly accessible to flowing water. Two representative, idealized scenarios were examined, one wherein immiscible liquid at residual saturation exists within a lower-permeability unit residing in a higher-permeability matrix, and one wherein immiscible liquid at higher saturation (a pool) exists within a higher-permeability unit adjacent to a lower-permeability unit. As expected, effluent concentrations were significantly less than aqueous solubility due to dilution and by-pass flow effects. The measured data were simulated with two mathematical models, one based on a simple description of the system and one based on a more complex description. The permeability field and the distribution of the immiscible-liquid zones were represented explicitly in the more complex, distributed-process model. The dissolution rate coefficient in this case represents only the impact of local-scale (and smaller) processes on dissolution, and the parameter values were accordingly obtained from the results of experiments conducted with one-dimensional, homogeneously-packed columns. In contrast, the system was conceptualized as a pseudo-homogeneous medium with immiscible liquid uniformly distributed throughout the system for the simpler, lumped-process model. With this approach, all factors that influence immiscible-liquid dissolution are incorporated into the calibrated dissolution rate coefficient, which in such cases serves as a composite or lumped term. The calibrated dissolution rate coefficients obtained from the simulations conducted with the lumped-process model were approximately two to three orders-of-magnitude smaller than the independently-determined values used for the simulations conducted with the distributed-process model. This disparity reflects the difference in implicit versus explicit consideration of the larger-scale factors influencing immiscible-liquid dissolution in the systems.


Subject(s)
Models, Theoretical , Water Pollutants/chemistry , Porosity , Solubility , Water Movements
3.
Chemosphere ; 71(8): 1511-21, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18279910

ABSTRACT

A series of flow-cell experiments was conducted to investigate aqueous dissolution and mass-removal behavior for systems wherein immiscible liquid was non-uniformly distributed in physically heterogeneous source zones. The study focused specifically on characterizing the relationship between mass flux reduction and mass removal for systems for which immiscible liquid is poorly accessible to flowing water. Two idealized scenarios were examined, one wherein immiscible liquid at residual saturation exists within a lower-permeability unit residing in a higher-permeability matrix, and one wherein immiscible liquid at higher saturation (a pool) exists within a higher-permeability unit adjacent to a lower-permeability unit. The results showed that significant reductions in mass flux occurred at relatively moderate mass-removal fractions for all systems. Conversely, minimal mass flux reduction occurred until a relatively large fraction of mass (>80%) was removed for the control experiment, which was designed to exhibit ideal mass removal. In general, mass flux reduction was observed to follow an approximately one-to-one relationship with mass removal. Two methods for estimating mass-flux-reduction/mass-removal behavior, one based on system-indicator parameters (ganglia-to-pool ratio) and the other a simple mass-removal function, were used to evaluate the measured data. The results of this study illustrate the impact of poorly accessible immiscible liquid on mass-removal and mass-flux processes, and the difficulties posed for estimating mass-flux-reduction/mass-removal behavior.


Subject(s)
Water Movements , Water Pollutants/analysis , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...