Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Biotechnol ; 34(4): 871-879, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38494884

ABSTRACT

Our group had isolated Bifidobacterium breve strain BS2-PB3 from human breast milk. In this study, we sequenced the whole genome of B. breve BS2-PB3, and with a focus on its safety profile, various probiotic characteristics (presence of antibiotic resistance genes, virulence factors, and mobile elements) were then determined through bioinformatic analyses. The antibiotic resistance profile of B. breve BS2-PB3 was also evaluated. The whole genome of B. breve BS2-PB3 consisted of 2,268,931 base pairs with a G-C content of 58.89% and 2,108 coding regions. The average nucleotide identity and whole-genome phylogenetic analyses supported the classification of B. breve BS2-PB3. According to our in silico assessment, B. breve BS2-PB3 possesses antioxidant and immunomodulation properties in addition to various genes related to the probiotic properties of heat, cold, and acid stress, bile tolerance, and adhesion. Antibiotic susceptibility was evaluated using the Kirby-Bauer disk-diffusion test, in which the minimum inhibitory concentrations for selected antibiotics were subsequently tested using the Epsilometer test. B. breve BS2-PB3 only exhibited selected resistance phenotypes, i.e., to mupirocin (minimum inhibitory concentration/MIC >1,024 µg/ml), sulfamethoxazole (MIC >1,024 µg/ml), and oxacillin (MIC >3 µg/ml). The resistance genes against those antibiotics, i.e., ileS, mupB, sul4, mecC and ramA, were detected within its genome as well. While no virulence factor was detected, four insertion sequences were identified within the genome but were located away from the identified antibiotic resistance genes. In conclusion, B. breve BS2-PB3 demonstrated a sufficient safety profile, making it a promising candidate for further development as a potential functional food.


Subject(s)
Anti-Bacterial Agents , Bifidobacterium breve , Genome, Bacterial , Microbial Sensitivity Tests , Phylogeny , Probiotics , Bifidobacterium breve/genetics , Anti-Bacterial Agents/pharmacology , Functional Food , Virulence Factors/genetics , Whole Genome Sequencing , Drug Resistance, Bacterial/genetics , Base Composition , Humans , Genomics , Antioxidants/pharmacology
2.
Medicines (Basel) ; 10(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36662487

ABSTRACT

Background: Polycystic ovary syndrome (PCOS) is a chronic disorder and is one of the most common endocrine disorders in women of a reproductive age. The prevalence of PCOS is growing globally; 52% of women in Southeast Asia alone suffer from this disorder. This disorder is caused by chronic hyperandrogenism, which hinders folliculogenesis. There is also a close relationship between hyperandrogenism and hyperinsulinemia/insulin resistance (IR), and it is estimated that 40-80% of PCOS patients suffer from insulin resistance (IR). Mesenchymal stem cells (MSCs) and their secretomes have been shown to alleviate PCOS symptoms by decreasing IR and androgen secretion by reducing inflammation. This study aimed to systematically review the literature to study the reported potential of MSCs and their secretomes in decreasing inflammation markers in PCOS treatment. Methods: A systematic literature search was performed on EMBASE, PubMed (MEDLINE), and the Cochrane Library with the terms insulin-resistant PCOS, mesenchymal stem cells, and secretome or conditioned medium as the search keywords. A total of 317 articles were reviewed. Four articles were identified as relevant for this systematic review. Results: The results of this study supported the use of mesenchymal stem cells and their secretions in decreasing inflammatory markers in the treatment of polycystic ovary syndrome. Conclusions: This review provided evidence that treatment with mesenchymal stem cells and their secretomes has the potential to treat PCOS due to its ability to downregulate androgen levels and increase insulin sensitivity, which thereby lowers the level of proinflammatory factors.

SELECTION OF CITATIONS
SEARCH DETAIL
...