Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Molecules ; 29(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38930879

ABSTRACT

Plastics have become indispensable in modern society; however, the proliferation of their waste has become a problem that can no longer be ignored as most plastics are not biodegradable. Depolymerization/degradation through sustainable processes in the context of the circular economy are urgent issues. The presence of multiple types of plastic materials makes it necessary to study the specific characteristics of each material. This mini-review aims to provide an overview of technological approaches and their performance for the depolymerization and/or degradation of one of the most widespread plastic materials, polypropylene (PP). The state of the art is presented, describing the most relevant technologies focusing on advanced oxidation technologies (AOT) and the results obtained so far for some of the approaches, such as ozonation, sonochemistry, or photocatalysis, with the final aim of making more sustainable the PP depolymerization/degradation process.

2.
Polymers (Basel) ; 15(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37299255

ABSTRACT

In this work, formulations of "environmentally compatible" silicone-based antifouling, synthesized in the laboratory and based on copper and silver on silica/titania oxides, have been characterized. These formulations are capable of replacing the non-ecological antifouling paints currently available on the market. The texture properties and the morphological analysis of these powders with an antifouling action indicate that their activity is linked to the nanometric size of the particles and to the homogeneous dispersion of the metal on the substrate. The presence of two metal species on the same support limits the formation of nanometric species and, therefore, the formation of homogeneous compounds. The presence of the antifouling filler, specifically the one based on titania (TiO2) and silver (Ag), facilitates the achievement of a higher degree of cross-linking of the resin, and therefore, a better compactness and completeness of the coating than that attained with the pure resin. Thus, a high degree of adhesion to the tie-coat and, consequently, to the steel support used for the construction of the boats was achieved in the presence of the silver-titania antifouling.

3.
Molecules ; 28(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37175217

ABSTRACT

Doping semiconducting oxides, such as LaFeO3 (LF), with metallic elements is a good strategy to improve the performance of photocatalysts. In this study, LF and ten different nanopowders metal-doped at the La or Fe site of LaFeO3 were evaluated in the photocatalytic degradation of ciprofloxacin (CP) and oxytetracycline (OTC). The following metals were used in the doping (mol%) process of LF: Pd 3% and 5%; Cu 10%; Mg 5%, 10%, and 20%; Ga 10%; Y 10% and 20%; and Sr 20%. The doped samples were synthetized using a citrate auto-combustion technique. From the X-ray diffraction (XRD) data, only a single crystalline phase, namely an orthorhombic perovskite structure, was observed except for trace amounts of PdO in the sample with Pd 5%. The specific surface area (SSA) ranged from 9 m2 g-1 (Ga 10%) to 20 m2 g-1 (Mg 20%). SEM images show that all samples were constituted from agglomerates of particles whose sizes ranged from ca. 20 nm (Mg 20%) to ca. 100 nm (Pd 5%). Dilute aqueous solutions (5 × 10-6 M) prepared for both CP and OTC were irradiated for 240 min under visible-light and in the presence of H2O2 (10-2 M). The results indicate a 78% removal of OTC with Cu 10% doped LF in a phosphate buffer (pH = 5.0). The degradation of CP is affected by pH and phosphate ions, with 78% (in unbuffered solution) and 54% (in phosphate buffer, pH = 5.0) removal achieved with Mg 10% doped LF. The reactions follow a pseudo-first order kinetic. Overall, this study is expected to deepen the assessment of photocatalytic activity by using substrates with different absorption capacities on photocatalysts.

4.
Photochem Photobiol Sci ; 22(7): 1517-1526, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36847924

ABSTRACT

A set of four composite materials was prepared, consisting of a nanosponge matrix based on ß-cyclodextrin in which carbon nitride was dispersed. The materials were characterized by the presence of diverse cross-linker units joining the cyclodextrin moieties, in order to vary the absorption/release abilities of the matrix. The composites were characterized and used as photocatalysts in aqueous medium under UV, visible and natural solar irradiation for the photodegradation of 4-nitrophenol, and for the selective partial oxidation of 5-hydroxymethylfurfural and veratryl alcohol to the corresponding aldehydes. The nanosponge-C3N4 composites showed higher activity than the pristine semiconductor, which can probably be attributed to the synergic effect of the nanosponge, capable of increasing the substrate concentration near the surface of the photocatalyst.

5.
Molecules ; 27(15)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35897898

ABSTRACT

Two sets of four different supported catalyst materials were prepared. One set was obtained by polymerization of a bis-vinylimidazolium salt, which formed a poly(ionic liquid) coating on SiO2, TiO2, boron nitride BN, and carbon nitride C3N4. The other set was, instead, obtained by immobilizing Keggin heteropolyacid H3PW12O40 onto poly-imidazolium functionalized materials. All the catalysts, including the bare supports, were subjected to physical and chemical characterization by XRD, SEM, Specific Surface Area and pore size measurements, TGA, FTIR, and acidity-basicity measurements. The catalytic activity of the materials was tested versus the fructose dehydration in water solution at two different sugar initial concentrations (0.3 and 1 M). Tests lasted 3 h with an amount of catalyst of 2 g∙L−1. The presence of the poly-imidazolium on the surface of the supports increased the catalytic conversion of fructose to 5-hydroxymethylfurfural (the most abundant compound obtained) and was further improved by the contemporary presence of the heteropolyacid, at least for the highest initial fructose concentration. In the latter conditions, the highest yield of 5-hydroxymethylfurfural (>40%) was also obtained.


Subject(s)
Ionic Liquids , Catalysis , Dehydration , Fructose/chemistry , Furaldehyde/chemistry , Humans , Ionic Liquids/chemistry , Silicon Dioxide/chemistry , Water/chemistry
6.
Nanomaterials (Basel) ; 11(7)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34361205

ABSTRACT

The catalytic dehydration of fructose to 5-hydroxymethylfurfural (HMF) in water was performed in the presence of pristine Nb2O5 and composites containing Nb and Ti, Ce or Zr oxides. In all experiments, fructose was converted to HMF using water as the solvent. The catalysts were characterized by powder X-ray diffraction, scanning electron microscopy, N2 physical adsorption, infrared and Raman spectroscopy and temperature-programmed desorption of NH3. Experimental parameters such as fructose initial concentration, volume of the reacting suspension, operation temperature, reaction time and amount of catalyst were tuned in order to optimize the catalytic reaction process. The highest selectivity to HMF was ca. 80% in the presence of 0.5 g·L-1 of bare Nb2O5, Nb2O5-TiO2 or Nb2O5-CeO2 with a maximum fructose conversion of ca. 70%. However, the best compromise between high conversion and high selectivity was reached by using 1 g·L-1 of pristine Nb2O5. Indeed, the best result was obtained in the presence of Nb2O5, with a fructose conversion of 76% and a selectivity to HMF of 75%, corresponding to the highest HMF yield (57%). This result was obtained at a temperature of 165° in an autoclave after three hours of reaction by using 6 mL of 1 M fructose suspension with a catalyst amount equal to 1 g·L-1.

7.
Materials (Basel) ; 13(5)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155730

ABSTRACT

Different solid sulfonic titania-based catalysts were investigated for the hydrothermal dehydration of fructose to 5-hydroxymethylfurfural (5-HMF). The catalytic behavior of the materials was evaluated in terms of fructose conversion and selectivity to 5-HMF. The surface and structural properties of the catalysts were investigated by means of X-ray diffraction (XRD), N2 adsorption isotherms, thermo-gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and acid capacity measurements. Special attention was focused on the reaction conditions, both in terms of 5-HMF selectivity and the sustainability of the process, choosing water as the solvent. Among the various process condition studied, TiO2-SO3H catalyzed a complete conversion (99%) of 1.1M fructose and 5-HMF selectivity (50%) and yield (50%) at 165 °C. An important improvement of the HMF selectivity (71%) was achieved when the reaction was carried out by using a lower fructose concentration (0.1M) and lower temperature (140 °C). The catalytic activities of the materials were related to their acid capacities as much as their textural properties. In particular, a counterbalance between the acidity and the structure of the pores in which the catalytic sites are located, results in the key issue for switch the selectivity towards the achievement of 5-HMF.

8.
Nanomaterials (Basel) ; 10(3)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32150928

ABSTRACT

A facile method to produce paper-TiO2 decorated with AgBr nanoparticles by a mild hydrothermal process at 140 °C was reported. The synthesis method was based on the immersion of the paper in a ready-made suspension of TiO2/AgBr, comprising TiO2 sol solution prepared in acidic conditions and AgBr solution (10-4 M). A paper-TiO2 sample was prepared and used as reference. The formation of crystalline phases of titanium oxide (TiO2) and silver bromide (AgBr) was demonstrated by XRD, Raman and EDX analyses. The surface morphology of the TiO2-AgBr was investigated by Field Effect Scanning Electronic Microscopy (FE-SEM). The photocatalytic performances of the prepared material were evaluated in the degradation of 2-propanol in the gas phase, under simulated sunlight illumination. Its antibacterial properties against Escherichia coli (E. coli) were also assessed. The efficiency of photodegradation and the anti-bacterial properties of paper-TiO2-AgBr were attributed to an improvement in the absorption of visible light, the increased production of reactive oxygen species (ROS) and the low recombination of photogenerated charge carriers due to the synergistic effect between TiO2 and AgBr/Ag nanoparticles.

9.
ACS Omega ; 4(4): 6994-7004, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31459812

ABSTRACT

Insoluble rust waste from the scraping of rusted iron-containing materials represents a cheap, eco-friendly, and available source of iron. LaFeO3 perovskite-type powders were successfully prepared by solution combustion synthesis using rust waste from an electricity transmission tower manufacturer. Solution combustion synthesis enabled introduction of this insoluble iron precursor directly into the final product, bypassing complex extraction procedures. Catalytic activity in the propylene oxidation of the waste-derived LaFeO3 with stoichiometric Fe/La ratio was almost identical to the commercial iron nitrate-derived LaFeO3, thus demonstrating the viability of this recycling solution. The amount of waste iron precursor was varied and its effect on the powder properties was investigated. A lesser stoichiometric amount of precursor produced a LaFeO3-La2O3 binary system, whereas a higher stoichiometric amount led to a LaFeO3-Fe2O3 binary system. Catalytic activity of iron-rich compositions in the propylene oxidation was only slightly lower than the stoichiometric one, whereas iron-poor compositions were much less active. This eco-friendly methodology can be easily extended to other iron perovskites with different chemical compositions and to other iron-containing compounds.

10.
Chemistry ; 21(50): 18338-44, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26503306

ABSTRACT

Mesoporous titania-organosilica nanoparticles comprised of anatase nanocrystals crosslinked with organosilica moieties have been prepared by direct co-condensation of a titania precursor, tetrabuthylortotitanate (TBOT), with two organosilica precursors, 1,4-bis(triethoxysilyl) benzene (BTEB) and 1,2-bis(triethoxysilyl) ethane (BTEE), in mild conditions and in the absence of surfactant. These hybrid materials show both high surface areas (200-360 m(2) g(-1) ) and pore volumes (0.3 cm(3) g(-1) ) even after calcination, and excellent photoactivity in the degradation of rhodamine 6G and in the partial oxidation of propene under UV irradiation, especially after the calcination of the samples. During calcination, there is a change in the Ti(IV) coordination and an increase in the content of SiOTi moieties in comparison with the uncalcined materials, which seems to be responsible for the enhanced photocatalytic activity of hybrid titania-silica materials as compared to both uncalcined samples and the control TiO2 .

11.
J Photochem Photobiol B ; 108: 8-15, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22257631

ABSTRACT

The presence of (±)α-pinene, (+)ß-pinene, (+)3-carene, and R-(+)limonene terpenes in wastewater of a citrus transformation factory was detected and analyzed, in a previous study, by using Solid Phase Micro-extraction (SPME) followed by GC analyses. Purpose of that research was to compare the genotoxic responses of mixtures of terpenes with the genotoxicity of the individual compounds, and the biological effects of actual wastewater. Genotoxicity was evaluated in the Salmonella reversion assay (Ames test) and in V79 cells by Comet assay. Ames tests indicated that the four single terpenes did not induce an increase of revertants frequency. On the contrary, the mixtures of terpenes caused, in the presence of metabolic activation, a highly significant increase of the revertants in TA100 strain in comparison to the control. The Comet assay showed a significant increase in DNA damage in V79 cells treated for 1h with single or mixed terpenes. Moreover, the actual wastewater was found highly genotoxic in bacterial and mammalian cells. Photocatalytic tests completely photodegraded the pollutants present in aqueous wastewater and the initial high genotoxicity of samples of wastewater collected during the photocatalytic run, was completely lose in 3h of irradiation.


Subject(s)
Citrus/chemistry , Titanium/chemistry , Water Pollutants, Chemical/toxicity , Animals , Bicyclic Monoterpenes , Bridged Bicyclo Compounds/chemistry , Bridged Bicyclo Compounds/toxicity , Catalysis , Cell Line , Chromatography, Gas , Comet Assay , Cricetinae , Cricetulus , Cyclohexenes/chemistry , Cyclohexenes/toxicity , DNA Damage/drug effects , Limonene , Monoterpenes/chemistry , Monoterpenes/toxicity , Mutagenicity Tests , Photolysis , Solid Phase Microextraction , Terpenes/chemistry , Terpenes/toxicity , Waste Disposal, Fluid , Water Pollutants, Chemical/chemistry
12.
J Hazard Mater ; 211-212: 3-29, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22169148

ABSTRACT

Heterogeneous photocatalysis is an advanced oxidation process which has been the subject of a huge amount of studies related to air cleaning and water purification. All these processes have been carried out mainly by using TiO(2)-based materials as the photocatalysts and ca. 75% of the articles published in the last 3 years is related to them. This review illustrates the efforts in the search of alternative photocatalysts that are not based on TiO(2), with some exceptions concerning particularly innovative modifications as nanoassembled TiO(2) or TiO(2) composites with active carbon, graphite and fullerene. Papers reporting preparation, characterization and testing of binary, ternary and quaternary compounds, have been reviewed. Despite many of these photocatalysts being effective for the photodecomposition of many pollutants, most of them do not allow a complete mineralization of the starting compounds, differently from TiO(2).


Subject(s)
Environmental Pollutants/chemistry , Environmental Pollutants/radiation effects , Environmental Restoration and Remediation/methods , Catalysis , Nanostructures/chemistry , Nanotubes, Carbon/chemistry , Oxides/chemistry , Photochemical Processes , Titanium/chemistry , Ultraviolet Rays
14.
J Hazard Mater ; 185(2-3): 591-7, 2011 Jan 30.
Article in English | MEDLINE | ID: mdl-20956058

ABSTRACT

The aim of this work was to study the biological effects of four monoterpenes, i.e. α-pinene, ß-pinene, 3-carene and D-limonene present in the wastewater of a citrus transformation factory. The study was carried out by exposing V79 Chinese hamster cells to single terpene or to the mixture of four terpenes at concentrations corresponding to those in the wastewater evaluated by head space solid phase micro extraction and gas chromatography (HS-SPME-GC) analyses. Treatments with single or combined terpenes similarly affected cell vitality, but only the combined treatments induced the 6-thioguanine resistant mutants. Moreover the photocatalytic degradation of the four terpenes was successfully achieved with the photocatalyst TiO(2) Degussa P25 in both the actual effluent and in synthetic solutions.


Subject(s)
Industrial Waste , Photolysis , Terpenes/chemistry , Titanium/chemistry , Water Pollutants/chemistry , Animals , Catalysis , Cell Line , Chromatography, Gas , Cricetinae , Cricetulus , Solid Phase Microextraction , Terpenes/toxicity , Water Pollutants/toxicity
15.
Chem Commun (Camb) ; 46(38): 7074-89, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20820526

ABSTRACT

Selective photocatalytic conversions are offering an alternative green route for replacing environmentally hazardous processes with safe and energy efficient routes. This paper reports the most recent advances in the application of heterogeneous photocatalysis to synthesize valuable compounds by selective oxidation and reduction.

16.
Chemistry ; 14(15): 4640-6, 2008.
Article in English | MEDLINE | ID: mdl-18398885

ABSTRACT

The photocatalytic oxidation of benzyl alcohol (BA) and 4-methoxybenzyl alcohol (MBA) has been performed in pure water by using commercial TiO(2) samples (Sigma-Aldrich, Merck, Degussa P25) and rutile TiO(2) prepared from TiCl(4) at low temperature. Particular attention has been devoted to the identification of the produced aromatic compounds along with the formed CO(2). Oxidation products such as the corresponding aromatic aldehyde and acid, as well as mono- and dihydroxylated aldehydes have been detected. The home-prepared rutile sample showed a marked selectivity towards the formation of the aromatic aldehyde (38 and 60 % for BA and MBA, respectively), resulting in a three- to sevenfold improvement relative to commercial samples, with the only byproduct being CO(2). This catalyst was found to be the most selective in the formation of aldehyde in water. By using the commercial or the calcined home-prepared samples, many hydroxylated aromatic compounds were detected besides the aldehyde and the acid. This finding points to a higher selectivity performance of the home-prepared rutile relative to the commercial TiO(2) samples. Some of the home-prepared samples were also dialysed to check the influence of the presence of Cl(-) species on catalyst reactivity and selectivity. We have attempted to explain the different reaction rate and selectivity observed for MBA and BA.


Subject(s)
Anisoles/chemical synthesis , Anisoles/radiation effects , Benzyl Alcohol/chemical synthesis , Benzyl Alcohol/radiation effects , Titanium/chemistry , Titanium/radiation effects , Ultraviolet Rays , Anisoles/chemistry , Benzyl Alcohol/chemistry , Catalysis , Molecular Structure , Oxidation-Reduction , Photochemistry , Water/chemistry , X-Ray Diffraction
17.
J Phys Chem B ; 109(25): 12347-52, 2005 Jun 30.
Article in English | MEDLINE | ID: mdl-16852524

ABSTRACT

Characterization of polycrystalline TiO(2) bare or porphyrin impregnated powders, used as photocatalysts for the degradation of 4-nitrophenol (4-NP) in aqueous suspension, was performed by time-resolved microwave conductivity (TRMC) measurements and electronic paramagnetic resonance (EPR) and X-ray photoelectron (XPS) spectroscopies. The presence of porphyrin sensitizers, as the metal-free or Cu [5,10,15,20-tetra (4-tert-butylphenyl)] porphyrin, impregnated onto the TiO(2) surface improved the photocatalytic activity of the bare TiO(2). TRMC measurements indicate that the number and lifetime of the photoinduced excess charge carriers increase in the presence of the macrocycles, and EPR and XPS spectroscopies support the mechanistic hypotheses based on the photoreactivity experiments.


Subject(s)
Electric Conductivity , Microwaves , Nitrophenols/chemistry , Porphyrins/chemistry , Titanium/chemistry , Catalysis , Crystallization , Molecular Structure , Photochemistry , Spectrum Analysis , Time Factors
18.
Ann Chim ; 93(7-8): 639-48, 2003.
Article in English | MEDLINE | ID: mdl-12940597

ABSTRACT

The photocatalytic oxidation of methyl-orange (C14H14N3SO3Na) dye was carried out in aqueous suspensions of polycrystalline TiO2 irradiated with artificial light until its complete mineralization was achieved. The performances of two widely used semiconductor powders were studied for comparison purposes. The dependence of dye photo-oxidation rate on various experimental parameters, including substrate concentration, semiconductor amount, and pH was investigated by using both catalysts. The observed dye degradation rates followed pseudo-first order kinetics with respect to the substrate concentration under the experimental conditions used. The two investigated TiO2 powders (Degussa P25 and Merck) showed different photoactivities. TOC analyses confirmed the complete mineralization achievable using both photocatalysts. Three main transient products still maintaining the chromophoric azo group were identified prior to their transformation into other degradation products which are non-absorbing in the visible region.


Subject(s)
Azo Compounds/chemistry , Coloring Agents/chemistry , Titanium/chemistry , Water Pollutants, Chemical , Catalysis , Hydrogen-Ion Concentration , Kinetics , Oxidation-Reduction , Photolysis , Suspensions , Textile Industry/methods , Water/chemistry
19.
Chemosphere ; 49(10): 1223-30, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12489718

ABSTRACT

The photodegradation of two common and very stable azo-dyes, i.e. methyl-orange (C14H14N3SO3Na) and orange II (C16H11N2SO4Na), is reported. The photocatalytic oxidation was carried out in aqueous suspensions of polycrystalline TiO2 irradiated by sunlight. Compound parabolic collectors, installed at the "Plataforma Solar de Almería" (PSA, Spain) were used as the photoreactors and two identical reacting systems allowed to perform photoreactivity runs for the two dyes at the same time and under the same irradiation conditions. The disappearance of colour and substrates together with the abatement of total organic carbon content was monitored. The main sulfonate-containing intermediates were found to be in lower number in respect to those obtained under artificial irradiation. In particular there were no more evidence of the presence of hydroxylated transients. The dependence of dye photooxidation rate on: (i) substrate concentration; (ii) catalyst amount; and (iii) initial pH was investigated. The influence of the presence of strong oxidant species (H2O2, S2O8(2-)) and some ions (Cl-, SO4(2-)) on the process was also studied.


Subject(s)
Azo Compounds/chemistry , Benzenesulfonates/chemistry , Coloring Agents/chemistry , Indicators and Reagents/chemistry , Titanium/chemistry , Catalysis , Oxidation-Reduction , Photochemistry , Sunlight , Water Pollutants, Chemical
20.
Ann Chim ; 92(9): 761-70, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12407900

ABSTRACT

Heterogeneous photocatalytic oxidation of contaminants present in wastewater produced by a textile industry was carried out. The samples were withdrawn from the plant before and after a traditional biological treatment. The effluents were named A and A' (before the biological treatment), B and B' (after the biological treatment). Polycrystalline TiO2 (Degussa P25) was used as the catalyst in a batch photoreactor with immersed lamp. An almost complete decolorization was observed after about 0.5 divided by 1 hours for both kinds of effluents, but the decrease of the total organic carbon (TOC) concentration occurred more slowly. The influence of some chemical oxidants, i.e. ozone, hydrogen peroxide and peroxydisulfate on the photo-oxidation rate was also investigated. After addition of H2O2 or S2O8(2-) TOC decreased more quickly only for B and B'. The runs performed by using O3 as bubbling gas showed a mineralization rate higher than that observed in the presence of O2.


Subject(s)
Industrial Waste , Textile Industry , Titanium/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical , Water Purification/methods , Catalysis , Coloring Agents , Hydrogen Peroxide/chemistry , Ozone/chemistry , Photochemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...