Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Environ Sci Technol ; 58(24): 10729-10739, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38829283

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) have been detected in an array of environmental media due to their ubiquitous use in industrial and consumer products as well as potential release from fluorochemical manufacturing facilities. During their manufacture, many fluorotelomer (FT) facilities rely on neutral intermediates in polymer production including the FT-alcohols (FTOHs). These PFAS are known to transform to the terminal acids (perfluoro carboxylic acids; PFCAs) at rates that vary with environmental conditions. In the current study on soils from a FT facility, we employed gas chromatography coupled with conventional- and high-resolution mass spectrometry (GC-MS and GC-HRMS) to investigate the profile of these precursor compounds, the intermediary secondary alcohols (sFTOHs), FT-acrylates (FTAcr), and FT-acetates (FTAce) in soils around the former FT-production facility. Of these precursors, the general trend in detection intensity was [FTOHs] > [sFTOHs] > [FTAcrs], while for the FTOHs, homologue intensities generally were [12:2 FTOH] > [14:2 FTOH] > [16:2 FTOH] > [10:2 FTOH] > [18:2 FTOH] > [20:2 FTOH] > [8:2 FTOH] ∼ [6:2 FTOH]. The corresponding terminal acids were also detected in all soil samples and positively correlated with the precursor concentrations. GC-HRMS confirmed the presence of industrial manufacturing byproducts such as FT-ethers and FT-esters and aided in the tentative identification of previously unreported dimers and other compounds. The application of GC-HRMS to the measurement and identification of precursor PFAS is in its infancy, but the methodologies described here will help refine its use in tentatively identifying these compounds in the environment.


Subject(s)
Fluorocarbons , Soil Pollutants , Soil , Soil Pollutants/analysis , Soil/chemistry , Fluorocarbons/analysis , Gas Chromatography-Mass Spectrometry , Environmental Monitoring , Manufacturing and Industrial Facilities
2.
Chemosphere ; 358: 142129, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679180

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a unique class of chemicals synthesized to aid in industrial processes, fire-fighting products, and to benefit consumer products such as clothing, cosmetics, textiles, carpets, and coatings. The widespread use of PFAS and their strong carbon-fluorine bonds has led to their ubiquitous presence throughout the world. Airborne transport of PFAS throughout the atmosphere has also contributed to environmental pollution. Due to the potential environmental and human exposure concerns of some PFAS, research has extensively focused on water, soil, and organismal detection, but the presence of PFAS in the air has become an area of growing concern. Methods to measure polar PFAS in various matrices have been established, while the investigation of polar and nonpolar PFAS in air is still in its early development. This literature review aims to present the last two decades of research characterizing PFAS in outdoor and indoor air, focusing on active and passive air sampling and analytical methods. The PFAS classes targeted and detected in air samples include fluorotelomer alcohols (FTOHs), perfluoroalkane sulfonamides (FASAs), perfluoroalkane sulfonamido ethanols (FASEs), perfluorinated carboxylic acids (PFCAs), and perfluorinated sulfonic acids (PFSAs). Although the manufacturing of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) has been largely phased out, these two PFAS are still often detected in air samples. Additionally, recent estimates indicate that there are thousands of PFAS that are likely present in the air that are not currently monitored in air methods. Advances in air sampling methods are needed to fully characterize the atmospheric transport of PFAS.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Environmental Monitoring , Fluorocarbons , Fluorocarbons/analysis , Environmental Monitoring/methods , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Humans
3.
J Chromatogr A ; 1705: 464204, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37442069

ABSTRACT

The scientific foundation for per- and polyfluoroalkyl substances (PFAS) measurements in water, soils, sediments, biosolids, biota, and outdoor air has rapidly expanded; however, there are limited efforts devoted to developing analytical methods to measure vapor-phase PFAS in indoor air. A gas chromatography-tandem mass spectrometry (GC-MS/MS) method coupled with thermal desorption (TD) sorbent tube analysis was developed to quantify trace levels of fluorotelomer alcohols (FTOHs) emitted from consumer products in the indoor environment. Method evaluation included determination of instrument detection limits (IDLs), quality assurance checks of target standards purchased from different vendors, sample loss during storage, and TD sorbent breakthrough with tubes coupled in-series. The IDLs for TD-GC-MS/MS analyses ranged from 0.07 - 0.09 ng/tube. No significant loss of FTOHs was observed during stability tests over 28 days with relative standard deviations (RSDs) of spiked TD tubes ranging from 3.1 - 7.7% and the RSDs of polypropylene copolymer vial storage of standard solutions ranging from 4.3 - 8.4%. TD tube breakthrough was minimal with recovered FTOHs in the second tubes <1% of the spiked concentrations in the first tubes with carrier gas volume up to 20 L. The method has been applied to determine FTOH emissions from three consumer products in micro-scale chambers. A liquid stone cleaner/sealer product contained the highest levels of 6:2, 8:2, and 10:2 FTOHs, while the mattress pad products contained lower levels of 8:2 and 10:2 FTOHs. The emission parameters, including the initial emission factors and first order decay rate constants, were obtained based on the experimental data. The developed methods are sensitive and specific for analysis of all four target FTOHs (4:2, 6:2, 8:2, 10:2 FTOHs) with chamber testing. The methods can be extended to indoor air sampling and could be applicable to ambient air sampling.


Subject(s)
Fluorocarbons , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry/methods , Fluorocarbons/analysis , Air/analysis
4.
Toxics ; 11(5)2023 May 16.
Article in English | MEDLINE | ID: mdl-37235277

ABSTRACT

Concern over per- and polyfluoroalkyl substances (PFAS) has increased as more is learned about their environmental presence, persistence, and bioaccumulative potential. The limited monitoring, toxicokinetic (TK), and toxicologic data available are inadequate to inform risk across this diverse domain. Here, 73 PFAS were selected for in vitro TK evaluation to expand knowledge across lesser-studied PFAS alcohols, amides, and acrylates. Targeted methods developed using gas chromatography-tandem mass spectrometry (GC-MS/MS) were used to measure human plasma protein binding and hepatocyte clearance. Forty-three PFAS were successfully evaluated in plasma, with fraction unbound (fup) values ranging from 0.004 to 1. With a median fup of 0.09 (i.e., 91% bound), these PFAS are highly bound but exhibit 10-fold lower binding than legacy perfluoroalkyl acids recently evaluated. Thirty PFAS evaluated in the hepatocyte clearance assay showed abiotic loss, with many exceeding 60% loss within 60 min. Metabolic clearance was noted for 11 of the 13 that were successfully evaluated, with rates up to 49.9 µL/(min × million cells). The chemical transformation simulator revealed potential (bio)transformation products to consider. This effort provides critical information to evaluate PFAS for which volatility, metabolism, and other routes of transformation are likely to modulate their environmental fates.

5.
Toxicol Appl Pharmacol ; 459: 116355, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36535553

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) represent a large chemical class lacking hazard, toxicokinetic, and exposure information. To accelerate PFAS hazard evaluation, new approach methodologies (NAMs) comprised of in vitro high-throughput toxicity screening, toxicokinetic data, and computational modeling are being employed in read across strategies to evaluate the larger PFAS landscape. A critical consideration to ensure robust evaluations is a parallel assessment of the quality of the screening stock solutions, where dimethyl sulfoxide (DMSO) is often the diluent of choice. Challenged by the lack of commercially available reference standards for many of the selected PFAS and reliance on mass spectrometry approaches for such an evaluation, we developed a high-throughput framework to evaluate the quality of screening stocks for 205 PFAS selected for these NAM efforts. Using mass spectrometry coupled with either liquid or gas chromatography, a quality scoring system was developed that incorporated observations during mass spectral examination to provide a simple pass or fail notation. Informational flags were used to further describe findings regarding parent analyte presence through accurate mass identification, evidence of contaminants and/or degradation, or further describe characteristics such as isomer presence. Across the PFAS-DMSO stocks tested, 148 unique PFAS received passing quality scores to allow for further in vitro testing whereas 57 received a failing score primarily due to detection issues or confounding effects of DMSO. Principle component analysis indicated vapor pressure and Henry's Law Constant as top indicators for a failed quality score for those analyzed by gas chromatography. Three PFAS in the hexafluoropropylene oxide family failed due to degradation in DMSO. As the PFAS evaluated spanned over 20 different structural categories, additional commentary describes analytical observations across specific groups related to PFAS stock composition, detection, stability, and methodologic considerations that will be useful for informing future analytical assessment and downstream HTS efforts. The high-throughput stock quality scoring workflow presented holds value as a tool to evaluate chemical presence and quality efficiently and for informing data inclusion in PFAS or other NAM screening efforts.


Subject(s)
Dimethyl Sulfoxide , Fluorocarbons , High-Throughput Screening Assays , Computer Simulation , Excipients , Fluorocarbons/toxicity
6.
ACS ES T Eng ; 3(9): 1308-1317, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-38989445

ABSTRACT

The destruction of per- and polyfluoroalkyl substances (PFAS) is critical to ensure effective remediation of PFAS contaminated matrices. The destruction of hazardous chemicals within incinerators and other thermal treatment processes has historically been determined by calculating the destruction efficiency (DE) or the destruction and removal efficiency (DRE). While high DEs, >99.99%, are deemed acceptable for most hazardous compounds, many PFAS can be converted to other PFAS at low temperatures resulting in high DEs without full mineralization and the potential release of the remaining fluorocarbon portions to the environment. Many of these products of incomplete combustion (PICs) are greenhouse gases, most have unknown toxicity, and some can react to create new perfluorocarboxylic acids. Experiments using aqueous film forming foam (AFFF) and a pilot-scale research combustor varied the combustion environment to determine if DEs indicate PFAS mineralization. Several operating conditions above 1090 °C resulted in high DEs and few detectable fluorinated PIC emissions. However, several conditions below 1000 °C produced DEs >99.99% for the quantifiable PFAS and mg/m3 emission concentrations of several non-polar PFAS PICs. These results suggest that DE alone may not be the best indication of total PFAS destruction, and additional PIC characterization may be warranted.

7.
Am J Perinatol ; 38(7): 690-697, 2021 06.
Article in English | MEDLINE | ID: mdl-31887748

ABSTRACT

OBJECTIVE: Surgical site infections (SSI, including wound infections, endometritis, pelvic abscess, and sepsis) may complicate cesarean section (C/S). We report outcomes before and after the introduction of an SSI prevention bundle that did not include antibiotics beyond routine prophylaxis (cefazolin, or gentamicin/clindamycin for penicillin-allergic patients). STUDY DESIGN: The prevention bundle was introduced following an increase in C/S-associated SSI, which itself was associated with an institutional switch in preoperative scrub from povidone-iodine to chlorhexidine gluconate (CHG)/isopropanol. Components of the bundle included: (1) full-body preoperative wash with 4% CHG cloths; (2) retraining on surgeon hand scrub; (3) retraining for surgical prep; and (4) patient education regarding wound care. Patients delivered by C/S at ≥24 weeks of gestation were segregated into four epochs over 7 years: (1) baseline (18 months when povidone-iodine was used); (2) CHG scrub (18 months after skin prep was switched to CHG); (3) bundle implementation (24 months); and (4) maintenance (24 months following implementation). RESULTS: A total of 3,637 patients were included (n = 667, 796, 1098, and 1076, respectively, in epochs 1-4). A rise in SSI occurred with the institutional switch from povidone-iodine to CHG (i.e., from baseline to the CHG scrub epoch, 8.4-13.3%, p < 0.01). Following the intervention (maintenance epoch), this rate decreased to below baseline values (to 4.5%, p < 0.01), attributable to a decline in wound infection (rates in the above three epochs 6.9, 12.9, and 3.5%, respectively, p < 0.01), with no change in endometritis. In multivariable analysis, only epoch and body mass index (BMI) were independently associated with SSI. The improvement associated with the prevention bundle held for stratified analysis of specific risk factors such as chorioamnionitis, prior C/S, obesity, labor induction, and diabetes. CONCLUSION: Implementation of a prevention bundle was associated with a reduction in post-C/S SSI. This improvement was achieved without the use of antibiotics beyond standard preoperative dosing.


Subject(s)
Anti-Infective Agents, Local/therapeutic use , Cesarean Section/adverse effects , Endometritis/prevention & control , Patient Care Bundles/methods , Surgical Wound Infection/prevention & control , Adult , Anti-Bacterial Agents/therapeutic use , Chlorhexidine/analogs & derivatives , Chlorhexidine/therapeutic use , Endometritis/epidemiology , Female , Humans , Logistic Models , Multivariate Analysis , Patient Education as Topic , Povidone-Iodine/therapeutic use , Pregnancy , Surgical Wound Infection/epidemiology
8.
Drug Metab Dispos ; 48(11): 1217-1223, 2020 11.
Article in English | MEDLINE | ID: mdl-32873593

ABSTRACT

Glutathione transferase zeta 1 (GSTZ1), expressed in liver and several extrahepatic tissues, catalyzes dechlorination of dichloroacetate (DCA) to glyoxylate. DCA inactivates GSTZ1, leading to autoinhibition of its metabolism. DCA is an investigational drug for treating several congenital and acquired disorders of mitochondrial energy metabolism, including cancer. The main adverse effect of DCA, reversible peripheral neuropathy, is more common in adults treated long-term than in children, who metabolize DCA more quickly after multiple doses. One dose of DCA to Sprague Dawley rats reduced GSTZ1 expression and activity more in liver than in extrahepatic tissues; however, the effects of multiple doses of DCA that mimic its therapeutic use have not been studied. Here, we examined the expression and activity of GSTZ1 in cytosol and mitochondria of liver, kidney, heart, and brain 24 hours after completion of 8-day oral dosing of 100 mg/kg per day sodium DCA to juvenile and adult Sprague Dawley rats. Activity was measured with DCA and with 1,2-epoxy-3-(4-nitrophenoxy)propane (EPNPP), reported to be a GSTZ1-selective substrate. In DCA-treated rats, liver retained higher expression and activity of GSTZ1 with DCA than other tissues, irrespective of rodent age. DCA-treated juvenile rats retained more GSTZ1 activity with DCA than adults. Consistent with this finding, there was less measurable DCA in tissues of juvenile than adult rats. DCA-treated rats retained activity with EPNPP, despite losing over 98% of GSTZ1 protein. These data provide insight into the differences between children and adults in DCA elimination under a therapeutic regimen and confirm that the liver contributes more to DCA metabolism than other tissues. SIGNIFICANCE STATEMENT: Dichloroacetate (DCA) is one of few drugs exhibiting higher clearance from children than adults, after repeated doses, for reasons that are unclear. We hypothesized that juveniles retain more glutathione transferase zeta 1 (GSTZ1) than adults in tissues after multiple DCA doses and found this was the case for liver and kidney, with rat as a model to assess GSTZ1 protein expression and activity with DCA. Although 1,2-epoxy-3-(4-nitrophenoxy)propane was reported to be a selective GSTZ1 substrate, its activity was not reduced in concert with GSTZ1 protein.


Subject(s)
Dichloroacetic Acid/pharmacokinetics , Glutathione Transferase/antagonists & inhibitors , Liver/drug effects , Adult , Age Factors , Animals , Child , Dichloroacetic Acid/administration & dosage , Dose-Response Relationship, Drug , Energy Metabolism/drug effects , Epoxy Compounds/pharmacokinetics , Female , Glutathione Transferase/metabolism , Humans , Liver/metabolism , Male , Mitochondrial Diseases/drug therapy , Models, Animal , Nitrophenols/pharmacokinetics , Rats
9.
Arch Womens Ment Health ; 23(2): 181-188, 2020 04.
Article in English | MEDLINE | ID: mdl-31203440

ABSTRACT

Screens and adjunctive treatments for perinatal mood are available, but barriers prevent many women from receiving them. Mobile technology may help bypass barriers. The purpose of this study was to evaluate the feasibility of screening and texting perinatal women via their personal smartphones. This prospective cohort study enrolled 203 pregnant and postpartum women receiving obstetric care at a Midwestern US academic medical center. Participants received one electronic mood screen and three text messages per week for two weeks. Texts were based on the Mothers and Babies Course, a CBT-based preventative program that addresses limited social support, lack of pleasant activities, and harmful thought patterns. Feasibility was defined as the ability to take the mood screen and receive texts without technical difficulties. Demographic variables were paired with results. Insurance type (private or public) was used as a proxy for socioeconomic status. Pearson chi-squared tests were used to analyze the data. A text-based satisfaction survey was also administered. The sample was 72% privately insured and 28% publicly insured. Sixty-seven percent completed electronic screening. Screen completion was significantly associated with private insurance (OR = 3.8, 95% CI 2.00-7.30) and "married" status (OR = 1.93, 95% CI 1.01-3.70). Most survey respondents (92%) found it easy to receive the texts, and 76% responded with very favorable comments about the texts. Smartphone mood screening and supportive texting were technically feasible. Screen completion was lower among single women with public insurance.


Subject(s)
Mental Disorders/diagnosis , Mobile Applications , Perinatal Care , Smartphone , Text Messaging , Cohort Studies , Feasibility Studies , Female , Humans , Patient Satisfaction , Postpartum Period/psychology , Pregnancy , Prospective Studies , Social Support , Surveys and Questionnaires
10.
Chem Res Toxicol ; 32(10): 2042-2052, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31524376

ABSTRACT

Dichloroacetate (DCA) has potential for treating mitochondrial disorders and cancer by activating the mitochondrial pyruvate dehydrogenase complex. Repeated dosing of DCA results in reduced drug clearance due to inactivation of glutathione transferase ζ1 (GSTZ1), its metabolizing enzyme. We investigated the time-course of inactivation of GSTZ1 in hepatic cytosol and mitochondria after one oral dose of 100 mg/kg DCA to female Sprague-Dawley rats aged 4 weeks (young) and 52 weeks (adult) as models for children and adults, respectively. GSTZ1 activity with both DCA and an endogenous substrate, maleylacetone (MA), as well as GSTZ1 protein expression were rapidly reduced in cytosol from both ages following DCA treatment. In mitochondria, loss of GSTZ1 protein and activity with DCA were even more rapid. The cytosolic in vivo half-lives of the loss of GSTZ1 activity with DCA were 1.05 ± 0.03 and 0.82 ± 0.02 h (mean ± S.D., n = 6) for young and adult rats, respectively, with inactivation significantly more rapid in adult rats, p < 0.001. The mitochondrial inactivation half-lives were similar in young (0.57 ± 0.02 h) and adult rats (0.54 ± 0.02 h) and were significantly (p < 0.0001) shorter than cytosolic inactivation half-lives. By 24 h after DCA administration, activity and expression remained at 10% or less than control values. The in vitro GSTZ1 inactivation half-lives following incubation with 2 mM DCA in the presence of physiological chloride (Cl-) concentrations (cytosol = 44 mM, mitochondria = 1-2 mM) exhibited marked differences between subcellular fractions, being 3 times longer in the cytosol than in the mitochondria, regardless of age, suggesting that the lower Cl- concentration in mitochondria explained the faster degradation of GSTZ1. These results demonstrate for the first time that rat mitochondrial GSTZ1 is more readily inactivated by DCA than cytosolic GSTZ1, and cytosolic GSTZ1 is inactivated more rapidly in adult than young rats.


Subject(s)
Cytosol/enzymology , Dichloroacetic Acid/pharmacology , Dichloroacetic Acid/toxicity , Glutathione Transferase/antagonists & inhibitors , Liver/drug effects , Mitochondria/drug effects , Animals , Dichloroacetic Acid/administration & dosage , Female , Glutathione Transferase/metabolism , Liver/metabolism , Mitochondria/metabolism , Rats , Rats, Sprague-Dawley
11.
Neural Regen Res ; 13(12): 2029-2037, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30323116

ABSTRACT

Neurovascular disorders, such as traumatic brain injury and stroke, persist as leading causes of death and disability - thus, the search for novel therapeutic approaches for these disorders continues. Many hurdles have hindered the translation of effective therapies for traumatic brain injury and stroke primarily because of the inherent complexity of neuropathologies and an inability of current treatment approaches to adapt to the unique cell death pathways that accompany the disorder symptoms. Indeed, developing potent treatments for brain injury that incorporate dynamic and multiple disorder-engaging therapeutic targets are likely to produce more effective outcomes than traditional drugs. The therapeutic use of hypothermia presents a promising option which may fit these criteria. While regulated temperature reduction has displayed great promise in preclinical studies of brain injury, clinical trials have been far less consistent and associated with adverse effects, especially when hypothermia is pursued via systemic cooling. Accordingly, devising better methods of inducing hypothermia may facilitate the entry of this treatment modality into the clinic. The use of the delta opioid peptide D-alanine D-leucine enkephalin (DADLE) to pharmacologically induce temperature reduction may offer a potent alternative, as DADLE displays both the ability to cause temperature reduction and to confer a broad profile of other neuroprotective and neuroregenerative processes. This review explores the prospect of DADLE-mediated hypothermia to treat neurovascular brain injuries, emphasizing the translational steps necessary for its clinical translation.

12.
Drug Metab Dispos ; 46(8): 1118-1128, 2018 08.
Article in English | MEDLINE | ID: mdl-29853471

ABSTRACT

Glutathione transferase zeta1 (GSTZ1) catalyzes glutathione (GSH)-dependent dechlorination of dichloroacetate (DCA), an investigational drug with therapeutic potential in metabolic disorders and cancer. GSTZ1 is expressed in both hepatic cytosol and mitochondria. Here, we examined the ontogeny and characterized the properties of human mitochondrial GSTZ1. GSTZ1 expression and activity with DCA were determined in 103 human hepatic mitochondrial samples prepared from livers of donors aged 1 day to 84 years. DNA from each sample was genotyped for three common GSTZ1 functional single nucleotide polymorphisms. Expression of mitochondrial GSTZ1 protein increased in an age-dependent manner to a plateau after age 21 years. Activity with DCA correlated with expression, after taking into account the somewhat higher activity of samples that were homo- or heterozygous for GSTZ1A. In samples from livers with the GSTZ1C variant, apparent enzyme kinetic constants for DCA and GSH were similar for mitochondria and cytosol after correcting for the loss of GSH observed in mitochondrial incubations. In the presence of 38 mM chloride, mitochondrial GSTZ1 exhibited shorter half-lives of inactivation compared with the cytosolic enzyme (P = 0.017). GSTZ1 protein isolated from mitochondria was shown by mass spectrometry to be identical to cytosolic GSTZ1 protein in the covered primary protein sequence. In summary, we report age-related development in the expression and activity of human hepatic mitochondrial GSTZ1 does not have the same pattern as that reported for cytosolic GSTZ1. Some properties of cytosolic and mitochondrial GSTZ1 differed, but these were not related to differences in amino acid sequence or post-translationally modified residues.


Subject(s)
Glutathione Transferase/genetics , Liver/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Amino Acid Sequence , Child , Child, Preschool , Cytosol/metabolism , Dichloroacetic Acid/metabolism , Drugs, Investigational/metabolism , Female , Glutathione Transferase/metabolism , Humans , Infant , Kinetics , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Young Adult
13.
Biochem Pharmacol ; 152: 236-243, 2018 06.
Article in English | MEDLINE | ID: mdl-29626439

ABSTRACT

Biotransformation of dichloroacetate (DCA) to glyoxylate by hepatic glutathione transferase zeta 1 (GSTZ1) is considered the principal determinant of the rate of plasma clearance of the drug. However, several other organismal and subcellular factors are also known to influence DCA metabolism. We utilized a female rat model to study these poorly understood processes. Rats aged 4 weeks (young) and 42-52 weeks (adult) were used to model children and adults, respectively. Hepatic chloride concentrations, which influence the rate of GSTZ1 inactivation by DCA, were lower in rat than in human tissues and rats did not show the age dependence previously seen in humans. We found GSTZ1 expression and activity in rat brain, heart, and kidney cell-free homogenates that were age-dependent. GSTZ1 expression in brain was higher in young rats than adult rats, whereas cardiac and renal GSTZ1 expression levels were higher in adult than young rats. GSTZ1 activity with DCA could not be measured accurately in kidney cell-free homogenates due to rapid depletion of glutathione by γ-glutamyl transpeptidase. Following oral administration of DCA, 100 mg/kg, to rats, GSTZ1 expression and activity were reduced in all rat tissues, but chloride concentrations were not affected. Together, these data extend our understanding of factors that determine the in vivo kinetics of DCA.


Subject(s)
Chlorides/metabolism , Dichloroacetic Acid/metabolism , Glutathione Transferase/metabolism , Liver/metabolism , Animals , Brain/metabolism , Female , Gene Expression Regulation, Enzymologic , Glutathione , Glutathione Transferase/genetics , Kidney/metabolism , Mitochondria/metabolism , Myocardium/metabolism , Rats , Rats, Sprague-Dawley
14.
Handb Exp Pharmacol ; 247: 277-299, 2018.
Article in English | MEDLINE | ID: mdl-28315071

ABSTRACT

Research of the opioid system and its composite receptors and ligands has revealed its promise as a potential therapy for neurodegenerative diseases such as stroke and Parkinson's Disease. In particular, delta opioid receptors (DORs) have been elucidated as a therapeutically distinguished subset of opioid receptors and a compelling target for novel intervention techniques. Research is progressively shedding light on the underlying mechanism of DORs and has revealed two mechanisms of DOR neuroprotection; DORs function to maintain ionic homeostasis and also to trigger endogenous neuroprotective pathways. Delta opioid agonists such as (D-Ala2, D-Leu5) enkephalin (DADLE) have been shown to promote neuronal survival and decrease apoptosis, resulting in a substantial amount of research for its application as a neurological therapeutic. Most notably, DADLE has demonstrated significant potential to reduce cell death following ischemic events. Current research is working to reveal the complex mechanisms of DADLE's neuroprotective properties. Ultimately, our knowledge of the DOR receptors and agonists has made the opioid system a promising target for therapeutic intervention in many neurological disorders.


Subject(s)
Enkephalin, Leucine-2-Alanine/pharmacology , Nervous System Diseases/drug therapy , Opioid Peptides/pharmacology , Receptors, Opioid, delta/drug effects , Stroke/drug therapy , Animals , Enkephalin, Leucine-2-Alanine/therapeutic use , Humans , Nervous System Diseases/physiopathology , Opioid Peptides/therapeutic use , Stroke/physiopathology
15.
CNS Neurol Disord Drug Targets ; 16(4): 414-424, 2017.
Article in English | MEDLINE | ID: mdl-28322170

ABSTRACT

The opioid system has been elucidated as a potential target for therapy in a variety of neurological disorders including stroke. Delta opioid receptors have been revealed to pose an especially compelling biological function for new neuroprotective therapies. Two distinct therapeutic mechanisms have been characterized for delta opioid receptors, namely, these receptors aid in maintaining ionic homeostasis and initiate endogenous neuroprotective pathways. Specific agonists of delta opioid receptors, such as (D-Ala2, D-Leu5) enkephalin (DADLE), have displayed the ability to promote neuronal survival and mitigate apoptotic pathways. These findings have led to a significant amount of research on this molecule's potential as a neurotherapeutic. At the forefront of these efforts has been investigation into DADLE's ability to protect neurons and glial cells following ischemia. Additionally, current research is attempting to reveal the dynamic neuroprotective mechanisms that mediate DADLE's therapeutic benefits. This review article discusses the scientific evidence supporting the use of delta opioid family of receptors and ligands as a promising target for therapeutic intervention in neurological disorders, with emphasis on stroke.


Subject(s)
Brain Diseases/drug therapy , Brain Diseases/metabolism , Neuroprotective Agents/pharmacology , Receptors, Opioid, delta/metabolism , Animals , Humans , Neuroprotection/drug effects , Neuroprotection/physiology
17.
Brain Circ ; 3(3): 130-134, 2017.
Article in English | MEDLINE | ID: mdl-30276314

ABSTRACT

Stroke continues to maintain its status as one of the top causes of mortality within the United States. Currently, the only Food and Drug Administration (FDA)-approved drug in place for stroke patients, tissue plasminogen activator (tPA), has a rigid therapeutic window, closing at approximately 4.5 h after stroke onset. Due to this short time frame and other restrictions, such as any condition that increases a patient's risk for hemorrhaging, it has been predicted that <5% of ischemic stroke patients benefit from tPA. Given that rehabilitation therapy remains the only other option for stroke victims, there is a clear unmet clinical need for treatment available for the remaining 95%. While still considered an experimental treatment, the utilization of stem cell therapies for stroke holds consistent promise. Copious preclinical studies report the capacity for transplanted stem cells to rescue the brain parenchyma surrounding the stroke-induced infarct core. At present, the exact mechanisms in which stem cells contribute a robust therapeutic benefit remains unclear. Following stem cell administration, researchers have observed cell replacement, an increase in growth factors, and a reduction in inflammation. With a deeper understanding of the precise mechanism of stem cells, these therapies can be optimized in the clinic to afford the greatest therapeutic benefit. Recent studies have depicted a unique method of endogenous stem cell activation as a result of stem cell therapy. In both traumatic brain injury and stroke models, transplanted mesenchymal stromal cells (MSCs) facilitated a pathway between the neurogenic niches of the brain and the damaged area through extracellular matrix remodeling. The biobridge pioneered by the MSCs was utilized by the endogenous stem cells, and these cells were able to travel to the damaged areas distal to the neurogenic niches, a feat unachievable without prior remodeling. These studies broaden our understanding of stem cell interactions within the injured brain and help to guide both researchers and clinicians in developing an effective stem cell treatment for stroke. This paper is a review article. Referred literature in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences.

18.
Brain Circ ; 3(3): 167-174, 2017.
Article in English | MEDLINE | ID: mdl-30276320

ABSTRACT

Induced pluripotent stem (iPS) cells have attracted attention in recent years as a model of human genetic diseases. Starting from the diseased somatic cells isolated from an affected patient, iPS cells can be created and subsequently differentiated into various cell types that can be used to gain a better understanding of the disease at a cellular and molecular level. There are limitations of iPS cell generation, however, due to low efficiency, high costs, and lengthy protocols. The use of amniotic fluid stem cells (AFS) presents a worthy alternative as a stem cell source for modeling of human genetic diseases. Prenatal identification of chromosomal or Mendelian diseases may require the collection of amniotic fluid which is not only useful for the sake of diagnosis but also from this, AFS cells can be isolated and cultured. Since AFS cells show some characteristics of pluripotency, having the capacity to differentiate into various cell types derived from all three germ layers in vitro, they are a well-suited model for investigations regarding alterations in the molecular biology of a cell due to a specific genetic disease. This readily accessible source of stem cells can replace the necessity for generating iPS cells. Here, we expand on the applicability and importance of AFS cells as a model for discovery in the field of human genetic disease research. This paper is a review article. Referred literature in this paper has been listed in the references section. The data sets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences.

19.
J Neurosurg Sci ; 61(2): 173-179, 2017 04.
Article in English | MEDLINE | ID: mdl-27406955

ABSTRACT

Stroke causes a significant social and economic burden to the society. Despite advancement in awareness and prevention of stroke, there are still limited treatment options for stroke patients. One of the emerging experimental therapies for stroke is stem cell transplantation. The conventional belief of stem cell mechanisms is that the protective effects are produced by either cell replacement or releasing trophic factors. While the exact mechanisms of action of stem cells are not completely understood, recent evidence demonstrates another possible mechanism of stem cells. This new approach emphasizes on the formation of a biobridge between the damage area and the endogenous neurogenic niches of the brain. The transplanted cells can form a pathway which promotes the proliferation and migration of the endogenous stem cells. This paper discusses the use of stem cell transplantation for stroke with an emphasis on the new biobridge concept. Also discussed are the current challenges faced before this approach can advance to the clinical setting.


Subject(s)
Cell Differentiation/physiology , Cell- and Tissue-Based Therapy , Stem Cell Transplantation , Stem Cells/cytology , Stroke/therapy , Animals , Brain/surgery , Cell- and Tissue-Based Therapy/methods , Humans , Stem Cell Transplantation/methods
20.
Pharmacol Ther ; 170: 166-180, 2017 02.
Article in English | MEDLINE | ID: mdl-27771434

ABSTRACT

Dichloroacetate (DCA) has several therapeutic applications based on its pharmacological property of inhibiting pyruvate dehydrogenase kinase. DCA has been used to treat inherited mitochondrial disorders that result in lactic acidosis, as well as pulmonary hypertension and several different solid tumors, the latter through its ability to reverse the Warburg effect in cancer cells and restore aerobic glycolysis. The main clinically limiting toxicity is reversible peripheral neuropathy. Although administration of high doses to rodents can result in liver cancer, there is no evidence that DCA is a human carcinogen. In all studied species, including humans, DCA has the interesting property of inhibiting its own metabolism upon repeat dosing, resulting in alteration of its pharmacokinetics. The first step in DCA metabolism is conversion to glyoxylate catalyzed by glutathione transferase zeta 1 (GSTZ1), for which DCA is a mechanism-based inactivator. The rate of GSTZ1 inactivation by DCA is influenced by age, GSTZ1 haplotype and cellular concentrations of chloride. The effect of DCA on its own metabolism complicates the selection of an effective dose with minimal side effects.


Subject(s)
Dichloroacetic Acid/administration & dosage , Glutathione Transferase/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Dichloroacetic Acid/adverse effects , Dichloroacetic Acid/pharmacology , Dose-Response Relationship, Drug , Humans , Hypertension, Pulmonary/drug therapy , Mitochondrial Diseases/drug therapy , Neoplasms/drug therapy , Neoplasms/pathology , Pyruvate Dehydrogenase Acetyl-Transferring Kinase
SELECTION OF CITATIONS
SEARCH DETAIL
...