Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36013843

ABSTRACT

The current findings on concrete with fibers show that research has focused primarily on individual aspects, especially in terms of mechanical properties and structural uses. However, no broader view of the problems solved has been provided. In this study, we present a conceptual overview of a new, comprehensive experimental program for the assessment of fiber-reinforced concrete, which includes the analysis of microstructural and structural elements, as well as specific features such as shrinkage and resistance to pressurized water. The proposed experimental program included several variants of schemes for the dosing of fibers into concrete, using steel fibers that were short and straight. Fiber dosing was performed up to 110 kg/m3. The basic tests performed included tests of the compressive strength of concrete, and of the split and flexural tensile strength for different dosing amounts. Within the structural tests of reinforced concrete beams without shear reinforcement, two variants of spans with different degrees of reinforcement were implemented. Herein, the test results are evaluated graphically with a detailed analysis of the positive effect of fibers, and we also provide general recommendations for the structural uses of the fibers used and the design of fiber-reinforced concrete structures. Among the important results of this experimental program was the observation of a significant increase (of the order of tens) of the percentage of the split tensile strength and an increase of the overall load-bearing capacity of the reinforced concrete beams without shear reinforcement. Among the important aspects of our findings is the fact that a fine-grained concrete mixture was used, which increased resistance to pressure water seepage, and therefore, the effect of shrinkage can be influenced by the method of production and the treatment of the concrete used. We also provide detailed figures of the microstructure.

2.
Materials (Basel) ; 14(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34885306

ABSTRACT

Research on the interaction between slabs and subsoil involves the field of materials engineering, concrete structures, and geotechnics. In the vast majority of cases, research focuses on only one of these areas, whereas for advanced study and computer simulations, detailed knowledge of the whole task is required. Among the new knowledge and information upon which this article focuses is the evaluation of subsoil stress using specialized pressure cells, along with detailed measurements of the deformation of a fiber-reinforced concrete slab. From a design point of view, this research is focused on the issue of the center of the cross section and the influence of eccentricity. Knowledge in this area is not yet comprehensively available for fiber-reinforced concrete slabs, where 2D deformation sections of the slab and 3D deformation surfaces of the slab are used in experiments. The experimental program includes a centrically and eccentrically loaded slab. These are structural elements that were tested on a specialized device. Both slabs had the same concrete recipe, with a dispersed reinforcement content of 25 kg/m3. The dimensions of the slab were 2000 × 2000 × 150 mm. Laboratory tests assessed compressive strength, the modulus of elasticity, splitting tensile strength, and bending tensile strength. Based on approximate data from the 3D deformation surfaces, an evaluation of the load-displacement diagrams for the center of the slab and for the center of eccentricity was performed. In conclusion, an overall evaluation and discussion of the results relies on experiments and the mechanical properties of fiber-reinforced concrete.

3.
Materials (Basel) ; 14(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34885583

ABSTRACT

With the development of wooden structures and buildings, there is a need to research physical and numerical tests of wood-based structures. The presented research is focused on construction and computational approaches for new types of joints to use in wooden structures, particularly glued lamella elements made of wood and wood-based composites. This article focuses on improving the frame connection of a wooden post and a beam with the use of fasteners to ensure better load-bearing capacity and stiffness of the structure. In common practice, bolts or a combination of bolts and pins are used for this type of connection. The aim is to replace these commonly used fasteners with modern ones, namely full thread screws. The aim is also to shorten and simplify the assembly time in order to improve the load-bearing capacity and rigidity of this type of frame connection. Two variations of the experimental test were tested in this research. The first contained bolts and pins as connecting means and the second contained the connecting means of a full threaded screw. Each experiment contained a total of two tests. For a detailed study of the problem, we used a 2D or 3D computational model that models individual components, including fasteners.

SELECTION OF CITATIONS
SEARCH DETAIL
...