Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Plant Ecol ; 215(7): 747-758, 2014.
Article in English | MEDLINE | ID: mdl-26074725

ABSTRACT

In glacier forelands, seeds readily germinate, however, a high proportion of seedlings die shortly after their appearance. We hypothesized that besides drought, frost and missing safe sites, heat on the ground surface could be one of the major threats for seedlings. The heat strain in different ground strata was assessed from 2007 to 2010. The heat tolerance (LT50) of eleven alpine species from different successional stages was tested considering imbibed (G1) and germinated seeds (G2) as well as seedlings (G3). Additionally, the heat hardening capacity of seedlings was determined in the field. Across all species, LT50 decreased significantly by 9 K from G1 (55 °C) to G3 (46 °C), similarly in all species of the successional stages. Field-grown seedlings had mostly an increased LT50 (2K). Intraspecifically, LT50 of seedlings varied between 40.6 and 52.5 °C. Along the chronosequence, LT50 in G1 was similar, but was higher in G2 and G3 of early successional species. The highest temperatures occurred at 0-0.5 cm in air (mean/absolute maximum: 42.6/54.1 °C) posing a significant heat injury risk for seedlings when under water shortage transpirational cooling is prevented. Below small stones (0-0.5 cm), maxima were 4 K lower, indicating heat safer microsites. Maxima >30 °C occurred at 32.3, >40 °C at 6.2 %. Interannually, 2010 was the hottest year with heat exceeding LT50 at all microsites (0-0.5 cm). Temperature maxima on sandy surfaces were lower than on microsites with gravel (diameter <5-10 mm). The hot summer of 2010 may be a small foretaste of in future more severe and frequent heat waves. Ground surface temperature maxima at the pioneer stage are already now critical for heat survival and may partly explain the high seedling mortality recognized on recently deglaciated terrain.

2.
Ann Bot ; 103(7): 1129-43, 2009 May.
Article in English | MEDLINE | ID: mdl-19273477

ABSTRACT

BACKGROUND AND AIMS: Understanding processes and mechanisms governing changes in plant species along primary successions has been of major importance in ecology. However, to date hardly any studies have focused on the complete life cycle of species along a successional gradient, comparing pioneer, early and late-successional species. In this study it is hypothesized that pioneer species should initially have a population growth rate, lambda, greater than one with high fecundity rates, and declining growth rates when they are replaced by late-successional species. Populations of late-successional species should also start, at the mid-successional stage (when pioneer species are declining), with growth rates greater than one and arrive at rates equal to one at the late successional stage, mainly due to higher survival rates that allow these species to persist for a long time. METHODS: The demography of pioneer- (Saxifraga aizoides), early (Artemisia genipi) and late-successional species (Anthyllis vulneraria ssp. alpicola) was investigated together with that of a ubiquitous species (Poa alpina) along the Rotmoos glacier foreland (2300-2400 m a.s.l., Central Alps, Austria) over 3 years. A matrix modelling approach was used to compare the main demographic parameters. Elasticity values were plotted in a demographic triangle using fecundity, individual growth and survival as vital rates contributing to the population growth rates. KEY RESULTS: The results largely confirmed the predictions for population growth rates during succession. However, high survival rates of larger adults characterized all species, regardless of where they were growing along the succession. At the pioneer site, high mortality rates of seedlings, plantlets and young individuals were recorded. Fecundity was found to be of minor relevance everywhere, but it was nevertheless sufficient to increase or maintain the population sizes. CONCLUSIONS: Demographically, all the species over all sites behaved like late-successional or climax species in secondary successions, mainly relying on survival of adult individuals. Survival serves as a buffer against temporal variation right from the beginning of the primary succession, indicating a major difference between primary and secondary succession.


Subject(s)
Magnoliopsida/growth & development , Artemisia/growth & development , Fabaceae/growth & development , Poa/growth & development , Saxifragaceae/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...