Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Neurochem ; 168(5): 719-727, 2024 May.
Article in English | MEDLINE | ID: mdl-38124277

ABSTRACT

The excitatory neurotransmitter glutamate has a role in neuronal migration and process elongation in the central nervous system (CNS). The effects of chronic glutamate hyperactivity on vesicular and protein transport within CNS neurons, that is, processes necessary for neurite growth, have not been examined previously. In this study, we measured the effects of lifelong hyperactivity of glutamate neurotransmission on axoplasmic transport in CNS neurons. We compared wild-type (wt) to transgenic (Tg) mice over-expressing the glutamate dehydrogenase gene Glud1 in CNS neurons and exhibiting increases in glutamate transmitter formation, release, and synaptic activation in brain throughout the lifespan. We found that Glud1 Tg as compared with wt mice exhibited increases in the rate of anterograde axoplasmic transport in neurons of the hippocampus measured in brain slices ex vivo, and in olfactory neurons measured in vivo. We also showed that the in vitro pharmacologic activation of glutamate synapses in wt mice led to moderate increases in axoplasmic transport, while exposure to selective inhibitors of ion channel forming glutamate receptors very significantly suppressed anterograde transport, suggesting a link between synaptic glutamate receptor activation and axoplasmic transport. Finally, axoplasmic transport in olfactory neurons of Tg mice in vivo was partially inhibited following 14-day intake of ethanol, a known suppressor of axoplasmic transport and of glutamate neurotransmission. The same was true for transport in hippocampal neurons in slices from Glud1 Tg mice exposed to ethanol for 2 h ex vivo. In conclusion, endogenous activity at glutamate synapses regulates and glutamate synaptic hyperactivity increases intraneuronal transport rates in CNS neurons.


Subject(s)
Glutamate Dehydrogenase , Mice, Transgenic , Neurons , Receptors, Glutamate , Animals , Mice , Glutamate Dehydrogenase/metabolism , Glutamate Dehydrogenase/genetics , Neurons/metabolism , Neurons/drug effects , Receptors, Glutamate/metabolism , Axonal Transport/drug effects , Axonal Transport/physiology , Glutamic Acid/metabolism , Hippocampus/metabolism , Mice, Inbred C57BL
2.
J Neuroimmune Pharmacol ; 11(2): 348-57, 2016 06.
Article in English | MEDLINE | ID: mdl-27039332

ABSTRACT

The abuse of opiates such as morphine in synergy with HIV infection not only exacerbates neuropathogenesis but significantly impacts behavioral attributes in HIV infected subjects. Thus, the goal of the current study was to characterize behavioral perturbations in rhesus macaques subjected to chronic morphine and SIV infection. Specifically, we assessed three behavioral tasks: motor skill (MS), forelimb force (FFT) and progressive ratio (PR) tasks. After collecting baseline control data (44 weeks) and data during the morphine-only dependency period (26 weeks), a subset of animals were productively infected with neurovirulent strains of SIVmac (R71/E17) for an additional 33 weeks. A general pattern in the results is that behavioral decline occurred with high CSF viral loads but not necessarily with high plasma viral loads. Compared to saline controls, all treated animals showed significant decreases in performance on all three behavioral tasks during the morphine-only dependency period. During the post infection period, only the morphine plus SIV group showed a significant further decline and this only occurred for the MS task. Taken together, these data demonstrate a clear effect of morphine to produce behavioral deficits and also suggest that morphine can act synergistically with SIV/HIV to exacerbate behavioral deficits.


Subject(s)
Morphine/toxicity , Motor Skills/drug effects , Psychomotor Performance/drug effects , Simian Acquired Immunodeficiency Syndrome/physiopathology , Simian Immunodeficiency Virus/drug effects , Animals , Macaca mulatta , Male , Motor Skills/physiology , Psychomotor Performance/physiology , Simian Immunodeficiency Virus/physiology , Viral Load/drug effects , Viral Load/physiology
3.
J Neuroimmune Pharmacol ; 4(2): 260-75, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19283490

ABSTRACT

Our work characterizes the effects of opiate (morphine) dependence on auditory brainstem and visual evoked responses in a rhesus macaque model of neuro-AIDS utilizing a chronic continuous drug delivery paradigm. The goal of this study was to clarify whether morphine is protective, or if it exacerbates simian immunodeficiency virus (SIV)-related systemic and neurological disease. Our model employs a macrophage tropic CD4/CCR5 coreceptor virus, SIV(mac)239 (R71/E17), which crosses the blood-brain barrier shortly after inoculation and closely mimics the natural disease course of human immunodeficiency virus infection. The cohort was divided into three groups: morphine only, SIV only, and SIV + morphine. Evoked potential (EP) abnormalities in subclinically infected macaques were evident as early as 8 weeks postinoculation. Prolongations in EP latencies were observed in SIV-infected macaques across all modalities. Animals with the highest cerebrospinal fluid viral loads and clinical disease showed more abnormalities than those with subclinical disease, confirming our previous work (Raymond et al., J Neurovirol 4:512-520, 1998; J Neurovirol 5:217-231, 1999; AIDS Res Hum Retroviruses 16:1163-1173, 2000). Although some differences were observed in auditory and visual evoked potentials in morphine-treated compared to morphine-untreated SIV-infected animals, the effects were relatively small and not consistent across evoked potential type. However, morphine-treated animals with subclinical disease had a clear tendency toward higher virus loads in peripheral and central nervous system tissues (Marcario et al., J Neuroimmune Pharmacol 3:12-25, 2008) suggesting that if had been possible to follow all animals to end-stage disease, a clearer pattern of evoked potential abnormality might have emerged.


Subject(s)
Brain Diseases/physiopathology , Evoked Potentials, Auditory, Brain Stem/drug effects , Evoked Potentials, Visual/drug effects , Morphine/pharmacology , Narcotics/pharmacology , Opioid-Related Disorders/physiopathology , AIDS Dementia Complex/physiopathology , AIDS Dementia Complex/virology , Animals , Brain/drug effects , Brain/pathology , Brain/virology , Brain Diseases/virology , Disease Models, Animal , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/physiopathology , Simian Acquired Immunodeficiency Syndrome/virology , Viral Load
4.
J Neuroimmune Pharmacol ; 3(1): 12-25, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18247128

ABSTRACT

Morphine is known to prevent the development of cell-mediated immune (CMI) responses and enhance expression of the CCR5 receptor in monocyte macrophages. We undertook a study to determine the effect of morphine on the neuropathogenesis and immunopathogenesis of simian immunodeficiency virus (SIV) infection in Indian Rhesus Macaques. Hypothetically, the effect of morphine would be to prevent the development of CMI responses to SIV and to enhance the infection in macrophages. Sixteen Rhesus Macaques were divided into three experimental groups: M (morphine only, n = 5), VM (morphine + SIV, n = 6), and V (SIV only, n = 5). Animals in groups M and VM were given 2.5 mg/kg of morphine sulfate, four times daily, for up to 59 weeks. Groups VM and V were inoculated with SIVmacR71/17E 26 weeks after the beginning of morphine administration. Morphine prevented the development of enzyme-linked immunosorbent spot-forming cell CMI responses in contrast to virus control animals, all of which developed CMI. Whereas morphine treatment had no effect on viremia, cerebrospinal fluid viral titers or survival over the time course of the study, the drug was associated with a tendency for greater build-up of virus in the brains of infected animals. Histopathological changes in the brains of animals that developed disease were of a demyelinating type in the VM animals compared to an encephalitic type in the V animals. This difference may have been associated with the immunosuppressive effect of the drug in inhibiting CMI responses.


Subject(s)
Immunity, Cellular/drug effects , Morphine/pharmacology , Narcotics/pharmacology , Simian Acquired Immunodeficiency Syndrome/virology , Animals , Brain/drug effects , Brain/pathology , Brain/virology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Count , Flow Cytometry , Macaca mulatta , Male , RNA, Messenger/analysis , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/immunology , Viral Load , Viremia/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...